BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30429315)

  • 1. Metabolic programming a lean phenotype by deregulation of RNA polymerase III.
    Willis IM; Moir RD; Hernandez N
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse.
    Bonhoure N; Praz V; Moir RD; Willemin G; Mange F; Moret C; Willis IM; Hernandez N
    Sci Rep; 2020 Jul; 10(1):11956. PubMed ID: 32686713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.
    Bonhoure N; Byrnes A; Moir RD; Hodroj W; Preitner F; Praz V; Marcelin G; Chua SC; Martinez-Lopez N; Singh R; Moullan N; Auwerx J; Willemin G; Shah H; Hartil K; Vaitheesvaran B; Kurland I; Hernandez N; Willis IM
    Genes Dev; 2015 May; 29(9):934-47. PubMed ID: 25934505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maf1 phenotypes and cell physiology.
    Willis IM
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):330-337. PubMed ID: 29248739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maf1 regulation: a model of signal transduction inside the nucleus.
    Wei Y; Zheng XS
    Nucleus; 2010; 1(2):162-5. PubMed ID: 21326948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maf1 ameliorates cardiac hypertrophy by inhibiting RNA polymerase III through ERK1/2.
    Sun Y; Chen C; Xue R; Wang Y; Dong B; Li J; Chen C; Jiang J; Fan W; Liang Z; Huang H; Fang R; Dai G; Yan Y; Yang T; Li X; Huang ZP; Dong Y; Liu C
    Theranostics; 2019; 9(24):7268-7281. PubMed ID: 31695767
    [No Abstract]   [Full Text] [Related]  

  • 7. Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
    Mange F; Praz V; Migliavacca E; Willis IM; Schütz F; Hernandez N;
    Genome Res; 2017 Jun; 27(6):973-984. PubMed ID: 28341772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1.
    Kantidakis T; Ramsbottom BA; Birch JL; Dowding SN; White RJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11823-8. PubMed ID: 20543138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maf1, a new player in the regulation of human RNA polymerase III transcription.
    Reina JH; Azzouz TN; Hernandez N
    PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation.
    Chen CY; Lanz RB; Walkey CJ; Chang WH; Lu W; Johnson DL
    Cell Rep; 2018 Aug; 24(7):1852-1864. PubMed ID: 30110641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery.
    Willis IM; Moir RD
    Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1.
    Wei Y; Tsang CK; Zheng XF
    EMBO J; 2009 Aug; 28(15):2220-30. PubMed ID: 19574957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass.
    Phillips E; Ahmad N; Sun L; Iben J; Walkey CJ; Rusin A; Yuen T; Rosen CJ; Willis IM; Zaidi M; Johnson DL
    Elife; 2022 May; 11():. PubMed ID: 35611941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.
    Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.
    Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K
    J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells.
    Goodfellow SJ; Graham EL; Kantidakis T; Marshall L; Coppins BA; Oficjalska-Pham D; Gérard M; Lefebvre O; White RJ
    J Mol Biol; 2008 May; 378(3):481-91. PubMed ID: 18377933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases.
    Johnson SS; Zhang C; Fromm J; Willis IM; Johnson DL
    Mol Cell; 2007 May; 26(3):367-79. PubMed ID: 17499043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.
    Arimbasseri AG; Blewett NH; Iben JR; Lamichhane TN; Cherkasova V; Hafner M; Maraia RJ
    PLoS Genet; 2015 Dec; 11(12):e1005671. PubMed ID: 26720005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maf1, a general negative regulator of RNA polymerase III in yeast.
    Boguta M
    Biochim Biophys Acta; 2013; 1829(3-4):376-84. PubMed ID: 23201230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro.
    Cabart P; Lee J; Willis IM
    J Biol Chem; 2008 Dec; 283(52):36108-17. PubMed ID: 18974046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.