These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 30429333)
1. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Snyder BER; Bols ML; Rhoda HM; Vanelderen P; Böttger LH; Braun A; Yan JJ; Hadt RG; Babicz JT; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12124-12129. PubMed ID: 30429333 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Snyder BER; Böttger LH; Bols ML; Yan JJ; Rhoda HM; Jacobs AB; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI Proc Natl Acad Sci U S A; 2018 May; 115(18):4565-4570. PubMed ID: 29610304 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of benzene hydroxylation by high-valent bare Fe(IV)=O2+: explicit electronic structure analysis. Li JL; Zhang X; Huang XR Phys Chem Chem Phys; 2012 Jan; 14(1):246-56. PubMed ID: 22068928 [TBL] [Abstract][Full Text] [Related]
4. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI Chem Rev; 2018 Mar; 118(5):2718-2768. PubMed ID: 29256242 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
6. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
7. Transition-metal ions in zeolites: coordination and activation of oxygen. Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459 [TBL] [Abstract][Full Text] [Related]
8. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue. Hirose K; Ohkubo K; Fukuzumi S Chemistry; 2016 Aug; 22(36):12904-9. PubMed ID: 27465104 [TBL] [Abstract][Full Text] [Related]
9. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite. Rosa A; Ricciardi G; Jan Baerends E Inorg Chem; 2010 Apr; 49(8):3866-80. PubMed ID: 20302356 [TBL] [Abstract][Full Text] [Related]
10. Olefin cis-dihydroxylation with bio-inspired iron catalysts. evidence for an Fe(II)/Fe(IV) catalytic cycle. Oldenburg PD; Feng Y; Pryjomska-Ray I; Ness D; Que L J Am Chem Soc; 2010 Dec; 132(50):17713-23. PubMed ID: 21105649 [TBL] [Abstract][Full Text] [Related]
11. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
12. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Bal R; Tada M; Sasaki T; Iwasawa Y Angew Chem Int Ed Engl; 2006 Jan; 45(3):448-52. PubMed ID: 16323233 [No Abstract] [Full Text] [Related]
13. Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite. Yamaguchi S; Ishida Y; Koga H; Yahiro H Molecules; 2022 Oct; 27(20):. PubMed ID: 36296443 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and catalytic oxidation of organic pollutants using Fe-zeolite. Russo AV; Andrade CV; De Angelis LE; Jacobo SE Water Sci Technol; 2018 Feb; 77(3-4):939-947. PubMed ID: 29488957 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen peroxide and oxygen-hydrogen oxidation of aromatic compounds in catalytic systems containing heteropoly compounds. Kuznetsova NI; Kirillova NV; Kuznetsova LI; Smirnova MY; Likholobov VA J Hazard Mater; 2007 Jul; 146(3):569-76. PubMed ID: 17532134 [TBL] [Abstract][Full Text] [Related]
16. Iron catalyzed competitive olefin oxidation and ipso-hydroxylation of benzoic acids: further evidence for an Fe(V)═O oxidant. Das P; Que L Inorg Chem; 2010 Oct; 49(20):9479-85. PubMed ID: 20866083 [TBL] [Abstract][Full Text] [Related]
17. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3). Kröcher O; Brandenberger S Chimia (Aarau); 2012; 66(9):687-93. PubMed ID: 23211727 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst. Li Z; Shen LT; Huang W; Xie KC J Environ Sci (China); 2007; 19(12):1516-9. PubMed ID: 18277659 [TBL] [Abstract][Full Text] [Related]
19. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture. Ma L; Li J; Cheng Y; Lambert CK; Fu L Environ Sci Technol; 2012 Feb; 46(3):1747-54. PubMed ID: 22239740 [TBL] [Abstract][Full Text] [Related]
20. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands. Morimoto Y; Bunno S; Fujieda N; Sugimoto H; Itoh S J Am Chem Soc; 2015 May; 137(18):5867-70. PubMed ID: 25938800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]