These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30429544)

  • 1. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
    Will S; Iyer D; Rigol M
    Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p-Wave cold collisions in an optical lattice clock.
    Lemke ND; von Stecher J; Sherman JA; Rey AM; Oates CW; Ludlow AD
    Phys Rev Lett; 2011 Sep; 107(10):103902. PubMed ID: 21981504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unitary p-wave interactions between fermions in an optical lattice.
    Venu V; Xu P; Mamaev M; Corapi F; Bilitewski T; D'Incao JP; Fujiwara CJ; Rey AM; Thywissen JH
    Nature; 2023 Jan; 613(7943):262-267. PubMed ID: 36631646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.
    Wall ML; Koller AP; Li S; Zhang X; Cooper NR; Ye J; Rey AM
    Phys Rev Lett; 2016 Jan; 116(3):035301. PubMed ID: 26849600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.
    Bonnes L; Hazzard KR; Manmana SR; Rey AM; Wessel S
    Phys Rev Lett; 2012 Nov; 109(20):205305. PubMed ID: 23215502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-orbit-coupled fermions in an optical lattice clock.
    Kolkowitz S; Bromley SL; Bothwell T; Wall ML; Marti GE; Koller AP; Zhang X; Rey AM; Ye J
    Nature; 2017 Feb; 542(7639):66-70. PubMed ID: 28002409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing interactions between ultracold fermions.
    Campbell GK; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Swallows MD; Nicholson TL; Fortier T; Oates CW; Diddams SA; Lemke ND; Naidon P; Julienne P; Ye J; Ludlow AD
    Science; 2009 Apr; 324(5925):360-3. PubMed ID: 19372424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved observation of coherent multi-body interactions in quantum phase revivals.
    Will S; Best T; Schneider U; Hackermüller L; Lühmann DS; Bloch I
    Nature; 2010 May; 465(7295):197-201. PubMed ID: 20463733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radio-frequency spectroscopy of ultracold fermions.
    Gupta S; Hadzibabic Z; Zwierlein MW; Stan CA; Dieckmann K; Schunck CH; Van Kempen EG; Verhaar BJ; Ketterle W
    Science; 2003 Jun; 300(5626):1723-6. PubMed ID: 12738872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition.
    Livi LF; Cappellini G; Diem M; Franchi L; Clivati C; Frittelli M; Levi F; Calonico D; Catani J; Inguscio M; Fallani L
    Phys Rev Lett; 2016 Nov; 117(22):220401. PubMed ID: 27925719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum simulation. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism.
    Zhang X; Bishof M; Bromley SL; Kraus CV; Safronova MS; Zoller P; Rey AM; Ye J
    Science; 2014 Sep; 345(6203):1467-73. PubMed ID: 25147278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floquet Engineering Hz-Level Rabi Spectra in Shallow Optical Lattice Clock.
    Yin MJ; Lu XT; Li T; Xia JJ; Wang T; Zhang XF; Chang H
    Phys Rev Lett; 2022 Feb; 128(7):073603. PubMed ID: 35244448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipolar physics: a review of experiments with magnetic quantum gases.
    Chomaz L; Ferrier-Barbut I; Ferlaino F; Laburthe-Tolra B; Lev BL; Pfau T
    Rep Prog Phys; 2022 Dec; 86(2):. PubMed ID: 36583342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum phases from competing short- and long-range interactions in an optical lattice.
    Landig R; Hruby L; Dogra N; Landini M; Mottl R; Donner T; Esslinger T
    Nature; 2016 Apr; 532(7600):476-9. PubMed ID: 27064902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonks-Girardeau gas of ultracold atoms in an optical lattice.
    Paredes B; Widera A; Murg V; Mandel O; Fölling S; Cirac I; Shlyapnikov GV; Hänsch TW; Bloch I
    Nature; 2004 May; 429(6989):277-81. PubMed ID: 15152247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing the emergence of a quantum phase transition shell by shell.
    Bayha L; Holten M; Klemt R; Subramanian K; Bjerlin J; Reimann SM; Bruun GM; Preiss PM; Jochim S
    Nature; 2020 Nov; 587(7835):583-587. PubMed ID: 33239796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
    Doçaj A; Wall ML; Mukherjee R; Hazzard KR
    Phys Rev Lett; 2016 Apr; 116(13):135301. PubMed ID: 27081984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.