These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

796 related articles for article (PubMed ID: 30429547)

  • 21. Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae.
    Comyn SA; Flibotte S; Mayor T
    Sci Rep; 2017 Jun; 7(1):4183. PubMed ID: 28646136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system.
    Kimura A; Kurata Y; Nakabayashi J; Kagawa H; Hirano H
    J Proteomics; 2016 Jan; 130():33-41. PubMed ID: 26344132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular maintenance of nuclear protein homeostasis.
    Gallagher PS; Oeser ML; Abraham AC; Kaganovich D; Gardner RG
    Cell Mol Life Sci; 2014 May; 71(10):1865-79. PubMed ID: 24305949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.
    Summers DW; Wolfe KJ; Ren HY; Cyr DM
    PLoS One; 2013; 8(1):e52099. PubMed ID: 23341891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquitin chains in the Dsk2 UBL domain mediate Dsk2 stability and protein degradation in yeast.
    Sekiguchi T; Sasaki T; Funakoshi M; Ishii T; Saitoh YH; Kaneko S; Kobayashi H
    Biochem Biophys Res Commun; 2011 Aug; 411(3):555-61. PubMed ID: 21763274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hul5 ubiquitin ligase: good riddance to bad proteins.
    Fang NN; Mayor T
    Prion; 2012 Jul; 6(3):240-4. PubMed ID: 22561164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear protein quality is regulated by the ubiquitin-proteasome system through the activity of Ubc4 and San1 in fission yeast.
    Matsuo Y; Kishimoto H; Tanae K; Kitamura K; Katayama S; Kawamukai M
    J Biol Chem; 2011 Apr; 286(15):13775-90. PubMed ID: 21324894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A nucleus-based quality control mechanism for cytosolic proteins.
    Prasad R; Kawaguchi S; Ng DT
    Mol Biol Cell; 2010 Jul; 21(13):2117-27. PubMed ID: 20462951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation.
    Lu K; den Brave F; Jentsch S
    Nat Cell Biol; 2017 Jun; 19(6):732-739. PubMed ID: 28504708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast chaperones and ubiquitin ligases contribute to proteostasis during arsenite stress by preventing or clearing protein aggregates.
    Rodrigues JI; Lorentzon E; Hua S; Boucher A; Tamás MJ
    FEBS Lett; 2023 Jul; 597(13):1733-1747. PubMed ID: 37191881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast.
    Theodoraki MA; Nillegoda NB; Saini J; Caplan AJ
    J Biol Chem; 2012 Jul; 287(28):23911-22. PubMed ID: 22593585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance.
    Defenouillère Q; Fromont-Racine M
    Curr Genet; 2017 Dec; 63(6):997-1005. PubMed ID: 28528489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome.
    Zuin A; Bichmann A; Isasa M; Puig-Sàrries P; Díaz LM; Crosas B
    Biochem J; 2015 Dec; 472(3):353-65. PubMed ID: 26450923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast.
    Kandasamy G; Andréasson C
    J Cell Sci; 2018 Mar; 131(6):. PubMed ID: 29507114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function.
    Burns GD; Hilal OE; Sun Z; Reutter KR; Preston GM; Augustine AA; Brodsky JL; Guerriero CJ
    FEBS Lett; 2021 Sep; 595(18):2383-2394. PubMed ID: 34358326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for measuring misfolded protein clearance in the budding yeast Saccharomyces cerevisiae.
    Samant RS; Frydman J
    Methods Enzymol; 2019; 619():27-45. PubMed ID: 30910025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. It's not just a phase; ubiquitination in cytosolic protein quality control.
    Baker HA; Bernardini JP
    Biochem Soc Trans; 2021 Feb; 49(1):365-377. PubMed ID: 33634825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inner-nuclear-membrane-associated degradation employs Dfm1-independent retrotranslocation and alleviates misfolded transmembrane-protein toxicity.
    Flagg MP; Wangeline MA; Holland SR; Duttke SH; Benner C; Neal S; Hampton RY
    Mol Biol Cell; 2021 Apr; 32(7):521-537. PubMed ID: 33566711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control.
    Singh A; Vashistha N; Heck J; Tang X; Wipf P; Brodsky JL; Hampton RY
    Mol Biol Cell; 2020 Nov; 31(24):2669-2686. PubMed ID: 32966159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. False start: cotranslational protein ubiquitination and cytosolic protein quality control.
    Comyn SA; Chan GT; Mayor T
    J Proteomics; 2014 Apr; 100():92-101. PubMed ID: 23954725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.