These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30429783)

  • 1. Human-Robotic Variable-Stiffness Grasps of Small-Fruit Containers Are Successful Even Under Severely Impaired Sensory Feedback.
    Haas M; Friedl W; Stillfried G; Höppner H
    Front Neurorobot; 2018; 12():70. PubMed ID: 30429783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Variable Stiffness Particle Phalange for Robust and Durable Robotic Grasping.
    Zhou J; Chen Y; Hu Y; Wang Z; Li Y; Gu G; Liu Y
    Soft Robot; 2020 Dec; 7(6):743-757. PubMed ID: 32319857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLASH-A Compliant Sensorized Hand for Handling Delicate Objects.
    Friedl W; Roa MA
    Front Robot AI; 2019; 6():138. PubMed ID: 33501153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bio-inspired Grasp Stiffness Control for Robotic Hands.
    Ruiz Garate V; Pozzi M; Prattichizzo D; Ajoudani A
    Front Robot AI; 2018; 5():89. PubMed ID: 33500968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Fine Control of Grasping Force during Hand-Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand.
    Fu Q; Santello M
    Front Neurorobot; 2017; 11():71. PubMed ID: 29375360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humans Can Visually Judge Grasp Quality and Refine Their Judgments Through Visual and Haptic Feedback.
    Maiello G; Schepko M; Klein LK; Paulun VC; Fleming RW
    Front Neurosci; 2020; 14():591898. PubMed ID: 33510608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.
    Leib R; Rubin I; Nisky I
    J Neurophysiol; 2018 Aug; 120(2):781-794. PubMed ID: 29766763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits.
    Nowak DA; Hermsdörfer J
    Neurosci Res; 2003 Sep; 47(1):65-72. PubMed ID: 12941448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Teleoperation of an Anthropomorphic Robot Hand with a Metamorphic Palm and Tunable-Stiffness Soft Fingers.
    Chen B; Chen Z; Chen X; Mao S; Pan F; Li L; Liu W; Min H; Ding X; Fang B; Sun F; Wen L
    Soft Robot; 2024 Jun; 11(3):508-518. PubMed ID: 38386776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography.
    Höppner H; Große-Dunker M; Stillfried G; Bayer J; van der Smagt P
    Front Neurorobot; 2017; 11():17. PubMed ID: 28588472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-dependent selection of grasp kinematics and stiffness in human object manipulation.
    Friedman J; Flash T
    Cortex; 2007 Apr; 43(3):444-60. PubMed ID: 17533767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting higher-order movement planning: a kinematic analysis of human prehension.
    Jakobson LS; Goodale MA
    Exp Brain Res; 1991; 86(1):199-208. PubMed ID: 1756790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the choice of grasp type and location when handing over an object.
    Cini F; Ortenzi V; Corke P; Controzzi M
    Sci Robot; 2019 Feb; 4(27):. PubMed ID: 33137738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.