These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30429839)
41. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493 [TBL] [Abstract][Full Text] [Related]
42. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Zabranska J; Pokorna D Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685 [TBL] [Abstract][Full Text] [Related]
43. Integration of Shiitake cultivation and solid-state anaerobic digestion for utilization of woody biomass. Lin Y; Ge X; Liu Z; Li Y Bioresour Technol; 2015 Apr; 182():128-135. PubMed ID: 25686546 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid. Zhang B; Zhao H; Yu H; Chen D; Li X; Wang W; Piao R; Cui Z J Microbiol Biotechnol; 2016 Apr; 26(4):739-47. PubMed ID: 26718471 [TBL] [Abstract][Full Text] [Related]
45. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints. Tandukar M; Pavlostathis SG Water Res; 2015 Dec; 87():432-45. PubMed ID: 25979784 [TBL] [Abstract][Full Text] [Related]
46. Modelling anaerobic digestion in a biogas reactor: ADM1 model development with lactate as an intermediate (Part I). Satpathy P; Biernacki P; Uhlenhut F; Cypionka H; Steinigeweg S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Dec; 51(14):1216-1225. PubMed ID: 27715605 [TBL] [Abstract][Full Text] [Related]
47. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Strong PJ; Kalyuzhnaya M; Silverman J; Clarke WP Bioresour Technol; 2016 Sep; 215():314-323. PubMed ID: 27146469 [TBL] [Abstract][Full Text] [Related]
48. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. Weiß S; Somitsch W; Klymiuk I; Trajanoski S; Guebitz GM Bioresour Technol; 2016 May; 207():244-51. PubMed ID: 26894564 [TBL] [Abstract][Full Text] [Related]
49. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Fei Q; Guarnieri MT; Tao L; Laurens LM; Dowe N; Pienkos PT Biotechnol Adv; 2014; 32(3):596-614. PubMed ID: 24726715 [TBL] [Abstract][Full Text] [Related]
50. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Mu L; Zhang L; Zhu K; Ma J; Ifran M; Li A Sci Total Environ; 2020 Feb; 704():135429. PubMed ID: 31837868 [TBL] [Abstract][Full Text] [Related]
51. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions. Pucker J; Jungmeier G; Siegl S; Pötsch EM Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470 [TBL] [Abstract][Full Text] [Related]
53. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry. Nartker S; Ammerman M; Aurandt J; Stogsdil M; Hayden O; Antle C Waste Manag; 2014 Dec; 34(12):2567-71. PubMed ID: 25249492 [TBL] [Abstract][Full Text] [Related]
54. Quantifying Methane and Methanol Metabolism of " He L; Fu Y; Lidstrom ME mSystems; 2019 Dec; 4(6):. PubMed ID: 31822604 [TBL] [Abstract][Full Text] [Related]
55. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate. Kakuk B; Kovács KL; Szuhaj M; Rákhely G; Bagi Z Anaerobe; 2017 Aug; 46():78-85. PubMed ID: 28576713 [TBL] [Abstract][Full Text] [Related]
56. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Tilche A; Galatola M Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917 [TBL] [Abstract][Full Text] [Related]
57. Biogas upgrading and utilization: Current status and perspectives. Angelidaki I; Treu L; Tsapekos P; Luo G; Campanaro S; Wenzel H; Kougias PG Biotechnol Adv; 2018; 36(2):452-466. PubMed ID: 29360505 [TBL] [Abstract][Full Text] [Related]
58. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. Acosta N; De Vrieze J; Sandoval V; Sinche D; Wierinck I; Rabaey K Bioresour Technol; 2018 Oct; 265():568-572. PubMed ID: 29887367 [TBL] [Abstract][Full Text] [Related]
59. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Santos LCD; Adarme OFH; Baêta BEL; Gurgel LVA; Aquino SF Bioresour Technol; 2018 Sep; 263():601-612. PubMed ID: 29793185 [TBL] [Abstract][Full Text] [Related]
60. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Mills N; Pearce P; Farrow J; Thorpe RB; Kirkby NF Waste Manag; 2014 Jan; 34(1):185-95. PubMed ID: 24060290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]