These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30429982)

  • 1. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides.
    DurĂ¡n Retamal JR; Periyanagounder D; Ke JJ; Tsai ML; He JH
    Chem Sci; 2018 Oct; 9(40):7727-7745. PubMed ID: 30429982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of Fermi Level Pinning for Ni and Ag Metal Contacts on Tungsten Dichalcogenides.
    Wang X; Hu Y; Kim SY; Addou R; Cho K; Wallace RM
    ACS Nano; 2023 Oct; 17(20):20353-20365. PubMed ID: 37788682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Interface Engineering of Transition-Metal Dichalcogenides with Organic Molecules and Polymers.
    Cho K; Pak J; Chung S; Lee T
    ACS Nano; 2019 Sep; 13(9):9713-9734. PubMed ID: 31330111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects.
    Schmidt H; Giustiniano F; Eda G
    Chem Soc Rev; 2015 Nov; 44(21):7715-36. PubMed ID: 26088725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional transition metal dichalcogenides: interface and defect engineering.
    Hu Z; Wu Z; Han C; He J; Ni Z; Chen W
    Chem Soc Rev; 2018 May; 47(9):3100-3128. PubMed ID: 29509206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges.
    Liao W; Zhao S; Li F; Wang C; Ge Y; Wang H; Wang S; Zhang H
    Nanoscale Horiz; 2020 May; 5(5):787-807. PubMed ID: 32129353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D Phosphorene: Epitaxial Growth and Interface Engineering for Electronic Devices.
    Zhang JL; Han C; Hu Z; Wang L; Liu L; Wee ATS; Chen W
    Adv Mater; 2018 Nov; 30(47):e1802207. PubMed ID: 30101443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides.
    Ma L; Wang Y; Liu Y
    Chem Rev; 2024 Mar; 124(5):2583-2616. PubMed ID: 38427801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Contact Engineering of Field-Effect Transistor Based on Two-Dimensional Materials.
    Miao J; Zhang X; Tian Y; Zhao Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors.
    Ahmed S; Yi J
    Nanomicro Lett; 2017; 9(4):50. PubMed ID: 30393745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance.
    Tang X; Hao Q; Hou X; Lan L; Li M; Yao L; Zhao X; Ni Z; Fan X; Qiu T
    Adv Mater; 2024 May; 36(19):e2312348. PubMed ID: 38302855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering.
    Sovizi S; Angizi S; Ahmad Alem SA; Goodarzi R; Taji Boyuk MRR; Ghanbari H; Szoszkiewicz R; Simchi A; Kruse P
    Chem Rev; 2023 Dec; 123(24):13869-13951. PubMed ID: 38048483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness Trends of Electron and Hole Conduction and Contact Carrier Injection in Surface Charge Transfer Doped 2D Field Effect Transistors.
    Arnold AJ; Schulman DS; Das S
    ACS Nano; 2020 Oct; 14(10):13557-13568. PubMed ID: 33026795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Chalcogen Defect Introducing Metal-Induced Gap States and Its Implications for Metal-TMDs' Interface Chemistry.
    Kumar J; Shrivastava M
    ACS Omega; 2023 Mar; 8(11):10176-10184. PubMed ID: 36969396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-type electrical contacts for 2D transition-metal dichalcogenides.
    Wang Y; Kim JC; Li Y; Ma KY; Hong S; Kim M; Shin HS; Jeong HY; Chhowalla M
    Nature; 2022 Oct; 610(7930):61-66. PubMed ID: 35914677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides.
    Bertolazzi S; Gobbi M; Zhao Y; Backes C; Samorì P
    Chem Soc Rev; 2018 Aug; 47(17):6845-6888. PubMed ID: 30043037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Thin-Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers.
    Lin YC; Torsi R; Geohegan DB; Robinson JA; Xiao K
    Adv Sci (Weinh); 2021 May; 8(9):2004249. PubMed ID: 33977064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers
    Chen J; Wu K; Ma H; Hu W; Yang J
    RSC Adv; 2020 Feb; 10(11):6388-6394. PubMed ID: 35495998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomically Resolved Defect-Engineering Scattering Potential in 2D Semiconductors.
    Chen HY; Hsu HC; Liang JY; Wu BH; Chen YF; Huang CC; Li MY; Radu IP; Chiu YP
    ACS Nano; 2024 Jul; 18(27):17622-17629. PubMed ID: 38922204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.