These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30430291)

  • 1. Automated projection spectroscopy in solid-state NMR.
    Klein A; Vasa SK; Linser R
    J Biomol NMR; 2018 Dec; 72(3-4):163-170. PubMed ID: 30430291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein NMR Resonance Assignment without Spectral Analysis: 5D SOlid-State Automated Projection SpectroscopY (SO-APSY).
    Orton HW; Stanek J; Schubeis T; Foucaudeau D; Ollier C; Draney AW; Le Marchand T; Cala-De Paepe D; Felli IC; Pierattelli R; Hiller S; Bermel W; Pintacuda G
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2380-2384. PubMed ID: 31657097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of protein structures in the solid state from NMR chemical shifts.
    Robustelli P; Cavalli A; Vendruscolo M
    Structure; 2008 Dec; 16(12):1764-9. PubMed ID: 19081052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
    Zhang R; Mroue KH; Ramamoorthy A
    Acc Chem Res; 2017 Apr; 50(4):1105-1113. PubMed ID: 28353338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid assignment of solution 31P NMR spectra of large proteins by solid-state spectroscopy.
    Iuga A; Spoerner M; Ader C; Brunner E; Kalbitzer HR
    Biochem Biophys Res Commun; 2006 Jul; 346(1):301-5. PubMed ID: 16759643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFT projection NMR spectroscopy for proteins in the solid state.
    Franks WT; Atreya HS; Szyperski T; Rienstra CM
    J Biomol NMR; 2010 Dec; 48(4):213-23. PubMed ID: 21052779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
    Mote KR; Madhu PK
    J Magn Reson; 2015 Dec; 261():149-56. PubMed ID: 26580064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of high dimensionality experiments to biomolecular NMR.
    Nowakowski M; Saxena S; Stanek J; Żerko S; Koźmiński W
    Prog Nucl Magn Reson Spectrosc; 2015 Nov; 90-91():49-73. PubMed ID: 26592945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy.
    Agarwal V; Penzel S; Szekely K; Cadalbert R; Testori E; Oss A; Past J; Samoson A; Ernst M; Böckmann A; Meier BH
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12253-6. PubMed ID: 25225004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state.
    Linser R; Fink U; Reif B
    J Biomol NMR; 2010 May; 47(1):1-6. PubMed ID: 20232230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. APSY-NMR with proteins: practical aspects and backbone assignment.
    Hiller S; Wider G; Wüthrich K
    J Biomol NMR; 2008 Nov; 42(3):179-95. PubMed ID: 18841481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy.
    Bechinger B; Aisenbrey C; Bertani P
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):190-204. PubMed ID: 15519315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state.
    Paulson EK; Morcombe CR; Gaponenko V; Dancheck B; Byrd RA; Zilm KW
    J Am Chem Soc; 2003 Dec; 125(51):15831-6. PubMed ID: 14677974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular magic-angle spinning solid-state NMR: recent methods and applications.
    Goldbourt A
    Curr Opin Biotechnol; 2013 Aug; 24(4):705-15. PubMed ID: 23481376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.
    Gopinath T; Veglia G
    J Magn Reson; 2015 Apr; 253():143-53. PubMed ID: 25797011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy.
    Giraud N; Böckmann A; Lesage A; Penin F; Blackledge M; Emsley L
    J Am Chem Soc; 2004 Sep; 126(37):11422-3. PubMed ID: 15366872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
    Zech SG; Wand AJ; McDermott AE
    J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in solid-state NMR spectroscopy and their relevance for bioanalytics.
    Paasch S; Brunner E
    Anal Bioanal Chem; 2010 Nov; 398(6):2351-62. PubMed ID: 20711561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constant-time through-bond 13C correlation spectroscopy for assigning protein resonances with solid-state NMR spectroscopy.
    Chen L; Olsen RA; Elliott DW; Boettcher JM; Zhou DH; Rienstra CM; Mueller LJ
    J Am Chem Soc; 2006 Aug; 128(31):9992-3. PubMed ID: 16881610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.