BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30430540)

  • 1. Exact inference on the random-effects model for meta-analyses with few studies.
    Michael H; Thornton S; Xie M; Tian L
    Biometrics; 2019 Jun; 75(2):485-493. PubMed ID: 30430540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q.
    Preuß M; Ziegler A
    Methods Inf Med; 2014; 53(1):54-61. PubMed ID: 24317521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permutation inference methods for multivariate meta-analysis.
    Noma H; Nagashima K; Furukawa TA
    Biometrics; 2020 Mar; 76(1):337-347. PubMed ID: 31399994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis.
    van Aert RCM; van Assen MALM; Viechtbauer W
    Res Synth Methods; 2019 Jun; 10(2):225-239. PubMed ID: 30589219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact inference for the random-effect model for meta-analyses with rare events.
    Gronsbell J; Hong C; Nie L; Lu Y; Tian L
    Stat Med; 2020 Feb; 39(3):252-264. PubMed ID: 31820458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis.
    Noma H; Nagashima K; Maruo K; Gosho M; Furukawa TA
    Stat Med; 2018 Mar; 37(7):1178-1190. PubMed ID: 29250816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact and approximate unconditional confidence intervals for proportion difference in the presence of incomplete data.
    Tang ML; Ling MH; Tian GL
    Stat Med; 2009 Feb; 28(4):625-41. PubMed ID: 19035467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate confidence intervals for moment-based estimators of the between-study variance in random effects meta-analysis.
    Jackson D; Bowden J; Baker R
    Res Synth Methods; 2015 Dec; 6(4):372-82. PubMed ID: 26287958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies.
    Röver C; Knapp G; Friede T
    BMC Med Res Methodol; 2015 Nov; 15():99. PubMed ID: 26573817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining one-sample confidence procedures for inference in the two-sample case.
    Fay MP; Proschan MA; Brittain E
    Biometrics; 2015 Mar; 71(1):146-156. PubMed ID: 25274182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generalized-weights solution to sample overlap in meta-analysis.
    Bom PRD; Rachinger H
    Res Synth Methods; 2020 Nov; 11(6):812-832. PubMed ID: 32790019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for inference on an overall effect in meta-analysis.
    Brockwell SE; Gordon IR
    Stat Med; 2007 Nov; 26(25):4531-43. PubMed ID: 17397112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of studies with missing data.
    Yuan Y; Little RJ
    Biometrics; 2009 Jun; 65(2):487-96. PubMed ID: 18565168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confidence intervals for the amount of heterogeneity in meta-analysis.
    Viechtbauer W
    Stat Med; 2007 Jan; 26(1):37-52. PubMed ID: 16463355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty of the time of first significance in random effects cumulative meta-analysis.
    Berkey CS; Mosteller F; Lau J; Antman EM
    Control Clin Trials; 1996 Oct; 17(5):357-71. PubMed ID: 8932970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian estimation in random effects meta-analysis using a non-informative prior.
    Bodnar O; Link A; Arendacká B; Possolo A; Elster C
    Stat Med; 2017 Jan; 36(2):378-399. PubMed ID: 27790722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Misunderstandings about Q and 'Cochran's Q test' in meta-analysis.
    Hoaglin DC
    Stat Med; 2016 Feb; 35(4):485-95. PubMed ID: 26303773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The exact distribution of Cochran's heterogeneity statistic in one-way random effects meta-analysis.
    Biggerstaff BJ; Jackson D
    Stat Med; 2008 Dec; 27(29):6093-110. PubMed ID: 18781561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation.
    Partlett C; Riley RD
    Stat Med; 2017 Jan; 36(2):301-317. PubMed ID: 27714841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics.
    Jackson D
    Res Synth Methods; 2013 Sep; 4(3):220-9. PubMed ID: 26053842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.