These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30430574)

  • 1. The Dual-Domain Porosity Apparatus: Characterizing Dual Porosity at the Sediment/Water Interface.
    Scruggs CR; Briggs M; Day-Lewis FD; Werkema D; Lane JW
    Ground Water; 2019 Jul; 57(4):640-646. PubMed ID: 30430574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Dual Domain Mass Transfer in Porous Media at the Pore Scale.
    Dorchester L; Day-Lewis FD; Singha K
    Ground Water; 2024; 62(2):260-275. PubMed ID: 37254685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling.
    Blackmore S; Smith L; Ulrich Mayer K; Beckie RD
    J Contam Hydrol; 2014 Dec; 171():49-65. PubMed ID: 25461887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation.
    Foster A; Trautz AC; Bolster D; Illangasekare T; Singha K
    J Contam Hydrol; 2021 Aug; 241():103811. PubMed ID: 33878512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of the dual-domain model to nonaggregated porous media.
    Liu Y; Kitanidis PK
    Ground Water; 2012; 50(6):927-34. PubMed ID: 22276634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of a natural gradient tracer experiment for the natural attenuation study: flow and physical transport.
    Julian HE; Boggs JM; Zheng C; Feehley CE
    Ground Water; 2001; 39(4):534-45. PubMed ID: 11447854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical and experimental analysis of solute transport in heterogeneous porous media.
    Wu L; Gao B; Tian Y; Muñoz-Carpena R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):338-43. PubMed ID: 24279625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust optimization technique for analysis of multi-tracer experiments.
    Gharasoo M; Wietzke LM; Knorr B; Bakkour R; Elsner M; Stumpp C
    J Contam Hydrol; 2019 Jul; 224():103481. PubMed ID: 31005265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single- and dual-porosity modelling of flow in reclaimed mine soil cores with embedded lignitic fragments.
    Gerke HH; Badorreck A; Einecke M
    J Contam Hydrol; 2009 Feb; 104(1-4):90-106. PubMed ID: 19019490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between dual-domain parameters and practical characterization data.
    Flach GP
    Ground Water; 2012; 50(2):216-29. PubMed ID: 21696389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of solute transport across transition interface of porous media under reversible flow directions.
    Chen Z; Ma X; Zhan H; Dou Z; Wang J; Zhou Z; Peng C
    Ecotoxicol Environ Saf; 2022 Jun; 238():113566. PubMed ID: 35490576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the impact of immobile water regions on the fate of nitroaromatic compounds in dual-porosity media.
    Knorr B; Maloszewski P; Stumpp C
    J Contam Hydrol; 2016 Aug; 191():44-53. PubMed ID: 27236346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of plume geometry, dilution and reactive mixing in porous media under highly transient flow fields at the surface water-groundwater interface.
    Basilio Hazas M; Ziliotto F; Lee J; Rolle M; Chiogna G
    J Contam Hydrol; 2023 Sep; 258():104243. PubMed ID: 37696230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Flux Detection Probe to Quantify Dynamic Groundwater-Surface Water Exchange in the Hyporheic Zone.
    Thomle J; Strickland C; Johnson TC; Zhu Y; Stegen J
    Ground Water; 2020 Nov; 58(6):892-900. PubMed ID: 32222074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mass Transfer Index (MTI): A semi-empirical approach for quantifying transport of solutes in variably saturated porous media.
    Stults J; Illangasekare T; Higgins CP
    J Contam Hydrol; 2021 Oct; 242():103842. PubMed ID: 34118564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA; Burgess WG; Barker JA; Jefferies NL
    J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time.
    Jørgensen PR; Helstrup T; Urup J; Seifert D
    J Contam Hydrol; 2004 Feb; 68(3-4):193-216. PubMed ID: 14734246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.