These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30430659)
21. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045 [TBL] [Abstract][Full Text] [Related]
22. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
23. Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Co-Doped Hollow Carbon Nanospheres for High-Performance Sodium/Potassium-Ion Half/Full Batteries. Sun Z; Wu XL; Xu J; Qu D; Zhao B; Gu Z; Li W; Liang H; Gao L; Fan Y; Zhou K; Han D; Gan S; Zhang Y; Niu L Small; 2020 May; 16(19):e1907670. PubMed ID: 32307886 [TBL] [Abstract][Full Text] [Related]
24. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. Luo Y; Shen J; Yao Y; Dai J; Ling F; Li L; Jiang Y; Wu X; Rui X; Yu Y Adv Mater; 2024 Aug; 36(32):e2405458. PubMed ID: 38839062 [TBL] [Abstract][Full Text] [Related]
25. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
26. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. Xu Y; Chang M; Fang C; Liu Y; Qiu Y; Ou M; Peng J; Wei P; Deng Z; Sun S; Sun X; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29985-29992. PubMed ID: 31364834 [TBL] [Abstract][Full Text] [Related]
27. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. Zhou Q; Liu HK; Dou SX; Chong S ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205 [TBL] [Abstract][Full Text] [Related]
28. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
29. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
30. Thermal Induced Conversion of CoFe Prussian Blue Analogs Nanocubes Wrapped by Doped Carbon Network Exhibiting Fast and Stable Potassium Ion Storage as Anode. Ouyang Y; Li P; Ma Y; Wei J; Tian W; Chen J; Shi J; Zhu Y; Wu J; Wang H Small; 2024 Jun; 20(23):e2308484. PubMed ID: 38143292 [TBL] [Abstract][Full Text] [Related]
31. Metal-organic framework derived bimetallic selenide embedded in nitrogen-doped carbon hierarchical nanosphere for highly reversible sodium-ion storage. Cong B; Li X; Suo Y; Chen G J Colloid Interface Sci; 2023 Apr; 635():370-378. PubMed ID: 36599236 [TBL] [Abstract][Full Text] [Related]
32. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Li WJ; Han C; Cheng G; Chou SL; Liu HK; Dou SX Small; 2019 Aug; 15(32):e1900470. PubMed ID: 30977287 [TBL] [Abstract][Full Text] [Related]
33. Rational design of hierarchical FeSe Jiang S; Xiang M; Zhang J; Chu S; Marcelli A; Chu W; Wu D; Qian B; Tao S; Song L Nanoscale; 2020 Nov; 12(43):22210-22216. PubMed ID: 33140808 [TBL] [Abstract][Full Text] [Related]
34. Controlled Synthesis of 2D Prussian Blue Analog Nanosheets with Low Coordinated Water Content for High-Performance Lithium Storage. Yin J; Zhou J; Wang Y; Ma Y; Zhou X; Wang G; Yang Y; Lu P; Yu J; Chen Y; Yuan Y; Ye C; Xi S; Fan Z Small Methods; 2022 Dec; 6(12):e2201107. PubMed ID: 36287094 [TBL] [Abstract][Full Text] [Related]
35. Designing CoHCF@FeHCF Core-Shell Structures to Enhance the Rate Performance and Cycling Stability of Sodium-Ion Batteries. Pan ZT; He ZH; Hou JF; Kong LB Small; 2023 Nov; 19(45):e2302788. PubMed ID: 37431201 [TBL] [Abstract][Full Text] [Related]
36. ZnSe/SnSe Heterostructure Incorporated with Selenium/Nitrogen Co-Doped Carbon Nanofiber Skeleton for Sodium-Ion Batteries. Zhang Y; Cheng L; Li L; Lin Y; Li S; Li Y; Ren X; Zhang P; Sun L Small; 2024 May; 20(22):e2306536. PubMed ID: 38168889 [TBL] [Abstract][Full Text] [Related]
37. Research Progress of Prussian Blue and Its Analogs as High-Performance Cathode Nanomaterials for Sodium-Ion Batteries. Yuan T; Chen Y; Gao X; Xu R; Zhang Z; Chen X; Cui L Small Methods; 2024 Aug; 8(8):e2301372. PubMed ID: 38098164 [TBL] [Abstract][Full Text] [Related]
38. Element screening of metal sites in Fe-based Prussian blue framework materials for ammonium ion battery applications: a first-principles study. Zhang Y; Xing J; Zhang B; Tong L; Fu X Phys Chem Chem Phys; 2024 Jan; 26(3):2387-2394. PubMed ID: 38168687 [TBL] [Abstract][Full Text] [Related]
39. Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries. Yuan DD; Wang YX; Cao YL; Ai XP; Yang HX ACS Appl Mater Interfaces; 2015 Apr; 7(16):8585-91. PubMed ID: 25849200 [TBL] [Abstract][Full Text] [Related]
40. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]