These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30430659)
41. Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na Peng J; Gao Y; Zhang H; Liu Z; Zhang W; Li L; Qiao Y; Yang W; Wang J; Dou S; Chou S Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205867. PubMed ID: 35583767 [TBL] [Abstract][Full Text] [Related]
42. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195 [TBL] [Abstract][Full Text] [Related]
43. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723 [TBL] [Abstract][Full Text] [Related]
44. Fluffy-Like Cation-Exchanged Prussian Blue Analogues for Sodium-Ion Battery Cathodes. Zhou Y; Jiang Y; Zhang Y; Chen Y; Wang Z; Liu A; Lv Z; Xie M ACS Appl Mater Interfaces; 2022 Jul; 14(28):32149-32156. PubMed ID: 35791817 [TBL] [Abstract][Full Text] [Related]
45. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn Ye L; Fu H; Cao R; Yang J J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511 [TBL] [Abstract][Full Text] [Related]
46. Prussian Blue Analogue-Derived Fe-Doped CoS Hu J; Liu C; Cai C; Sun Q; Lu M; Yao Z; Yang Y Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987276 [TBL] [Abstract][Full Text] [Related]
47. Investigation of Binary Metal (Ni, Co) Selenite as Li-Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions. Park GD; Yang SJ; Lee JH; Kang YC Small; 2019 Dec; 15(51):e1905289. PubMed ID: 31736246 [TBL] [Abstract][Full Text] [Related]
48. Hollow Stair-Stepping Spherical High-Entropy Prussian Blue Analogue for High-Rate Sodium Ion Batteries. Zhang Y; Huang J; Qiu L; Jiao R; Zhang Y; Yang G; Zhang L; Tian Z; Debroye E; Liu T; Gohy JF; Hofkens J; Lai F ACS Appl Mater Interfaces; 2024 May; 16(21):27684-27693. PubMed ID: 38753436 [TBL] [Abstract][Full Text] [Related]
49. SnSe Gao X; Kuai Y; Xu Z; Cao Y; Wang N; Hirano SI; Nuli Y; Wang J; Yang J Small Methods; 2021 Sep; 5(9):e2100437. PubMed ID: 34928066 [TBL] [Abstract][Full Text] [Related]
50. Low-cost Prussian blue analogues for sodium-ion batteries and other metal-ion batteries. Huang JQ; Du R; Zhang H; Liu Y; Chen J; Liu YJ; Li L; Peng J; Qiao Y; Chou SL Chem Commun (Camb); 2023 Jul; 59(61):9320-9335. PubMed ID: 37440172 [TBL] [Abstract][Full Text] [Related]
51. Structural Engineering of Prussian Blue Analogues Enabling All-Climate and Ultralong Cycling Sodium-Ion Batteries. Peng J; Hua W; Yang Z; Li JY; Wang J; Liang Y; Zhao L; Lai W; Wu X; Cheng Z; Peleckis G; Indris S; Wang JZ; Liu HK; Dou SX; Chou S ACS Nano; 2024 Jul; ():. PubMed ID: 39007545 [TBL] [Abstract][Full Text] [Related]
52. Stabilizing Metallic Iron Nanoparticles by Conformal Graphitic Carbon Coating for High-Rate Anode in Ni-Fe Batteries. Wu X; Zhang H; Huang KJ; Chen Z Nano Lett; 2020 Mar; 20(3):1700-1706. PubMed ID: 32031383 [TBL] [Abstract][Full Text] [Related]
54. Synergistically Achieving Superior Sodium Storage of Metal Selenides by Constructing N-Doped Carbon Foams and Utilizing Cu-Driven Replacement Reaction. Zhu C; Long T; Feng B; Wu C; Yu Q; Ding YL Small; 2023 Jun; 19(26):e2207716. PubMed ID: 36938701 [TBL] [Abstract][Full Text] [Related]
55. Co-Construction of Solid Solution Phase and Void Space in Yolk-Shell Fe Zheng J; Ju S; Xia G; Pan H; Yu X ACS Appl Mater Interfaces; 2022 Feb; 14(6):8076-8085. PubMed ID: 35112859 [TBL] [Abstract][Full Text] [Related]
56. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
57. O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries. Yang J; Tang M; Liu H; Chen X; Xu Z; Huang J; Su Q; Xia Y Small; 2019 Dec; 15(52):e1905311. PubMed ID: 31663266 [TBL] [Abstract][Full Text] [Related]
58. Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. Nie P; Yuan J; Wang J; Le Z; Xu G; Hao L; Pang G; Wu Y; Dou H; Yan X; Zhang X ACS Appl Mater Interfaces; 2017 Jun; 9(24):20306-20312. PubMed ID: 28570041 [TBL] [Abstract][Full Text] [Related]
59. Fe, Ni-modified ZIF-8 as a tensive precursor to derive N-doped carbon as Na and Li-ion batteries anodes. Jia H; Wang Y; Zhao S; Wang H; Ju N; Zhang X; Li H; Sun Z; Sun HB Nanotechnology; 2022 Dec; 34(8):. PubMed ID: 36541541 [TBL] [Abstract][Full Text] [Related]
60. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]