These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30430689)
1. The developmental neural substrates of item and serial order components of verbal working memory. Attout L; Ordonez Magro L; Szmalec A; Majerus S Hum Brain Mapp; 2019 Apr; 40(5):1541-1553. PubMed ID: 30430689 [TBL] [Abstract][Full Text] [Related]
2. The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order? Majerus S; Poncelet M; Van der Linden M; Albouy G; Salmon E; Sterpenich V; Vandewalle G; Collette F; Maquet P Neuroimage; 2006 Aug; 32(2):880-91. PubMed ID: 16702002 [TBL] [Abstract][Full Text] [Related]
3. The neurodevelopmental differences of increasing verbal working memory demand in children and adults. Vogan VM; Morgan BR; Powell TL; Smith ML; Taylor MJ Dev Cogn Neurosci; 2016 Feb; 17():19-27. PubMed ID: 26615571 [TBL] [Abstract][Full Text] [Related]
4. Probing the early development of visual working memory capacity with functional near-infrared spectroscopy. Buss AT; Fox N; Boas DA; Spencer JP Neuroimage; 2014 Jan; 85 Pt 1(0 1):314-25. PubMed ID: 23707803 [TBL] [Abstract][Full Text] [Related]
5. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Klingberg T Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923 [TBL] [Abstract][Full Text] [Related]
6. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Barnes JJ; Nobre AC; Woolrich MW; Baker K; Astle DE J Neurosci; 2016 Aug; 36(34):9001-11. PubMed ID: 27559180 [TBL] [Abstract][Full Text] [Related]
7. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Walter H; Bretschneider V; Grön G; Zurowski B; Wunderlich AP; Tomczak R; Spitzer M Cortex; 2003; 39(4-5):897-911. PubMed ID: 14584558 [TBL] [Abstract][Full Text] [Related]
8. The commonality of neural networks for verbal and visual short-term memory. Majerus S; D'Argembeau A; Martinez Perez T; Belayachi S; Van der Linden M; Collette F; Salmon E; Seurinck R; Fias W; Maquet P J Cogn Neurosci; 2010 Nov; 22(11):2570-93. PubMed ID: 19925207 [TBL] [Abstract][Full Text] [Related]
9. Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Edin F; Macoveanu J; Olesen P; Tegnér J; Klingberg T J Cogn Neurosci; 2007 May; 19(5):750-60. PubMed ID: 17488202 [TBL] [Abstract][Full Text] [Related]
11. Frontoparietal networks involved in categorization and item working memory. Braunlich K; Gomez-Lavin J; Seger CA Neuroimage; 2015 Feb; 107():146-162. PubMed ID: 25482265 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness. Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668 [TBL] [Abstract][Full Text] [Related]
13. Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Klingberg T; Forssberg H; Westerberg H J Cogn Neurosci; 2002 Jan; 14(1):1-10. PubMed ID: 11798382 [TBL] [Abstract][Full Text] [Related]
14. Neural mechanisms of two different verbal working memory tasks: A VLSM study. Ivanova MV; Dragoy O; Kuptsova SV; Yu Akinina S; Petrushevskii AG; Fedina ON; Turken A; Shklovsky VM; Dronkers NF Neuropsychologia; 2018 Jul; 115():25-41. PubMed ID: 29526647 [TBL] [Abstract][Full Text] [Related]
15. Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study. Beneventi H; Tønnessen FE; Ersland L Int J Neurosci; 2009; 119(11):2017-43. PubMed ID: 19863259 [TBL] [Abstract][Full Text] [Related]
16. Examining the neural correlates of active and passive forms of verbal-spatial binding in working memory. Grot S; Leclerc ME; Luck D Biol Psychol; 2018 Jul; 136():67-75. PubMed ID: 29802860 [TBL] [Abstract][Full Text] [Related]
17. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Iidaka T; Matsumoto A; Nogawa J; Yamamoto Y; Sadato N Cereb Cortex; 2006 Sep; 16(9):1349-60. PubMed ID: 16861334 [TBL] [Abstract][Full Text] [Related]
18. The importance of encoding-related neural dynamics in the prediction of inter-individual differences in verbal working memory performance. Majerus S; Salmon E; Attout L PLoS One; 2013; 8(7):e69278. PubMed ID: 23874935 [TBL] [Abstract][Full Text] [Related]
19. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Violante IR; Li LM; Carmichael DW; Lorenz R; Leech R; Hampshire A; Rothwell JC; Sharp DJ Elife; 2017 Mar; 6():. PubMed ID: 28288700 [TBL] [Abstract][Full Text] [Related]
20. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory. Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]