BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30430721)

  • 1. Products of Early and Advanced Glycation in the Soy Milk Proteome.
    Milkovska-Stamenova S; Krieg L; Hoffmann R
    Mol Nutr Food Res; 2019 Jan; 63(2):e1800725. PubMed ID: 30430721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of advanced glycation end products in the bovine milk proteome.
    Milkovska-Stamenova S; Hoffmann R
    Amino Acids; 2019 Jun; 51(6):891-901. PubMed ID: 30963298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.
    Renzone G; Arena S; Scaloni A
    J Proteomics; 2015 Mar; 117():12-23. PubMed ID: 25638024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiglycating potential of acesulfame potassium: an artificial sweetener.
    Ali A; More TA; Hoonjan AK; Sivakami S
    Appl Physiol Nutr Metab; 2017 Oct; 42(10):1054-1063. PubMed ID: 28618238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global proteomic analysis of advanced glycation end products in the
    Bilova T; Paudel G; Shilyaev N; Schmidt R; Brauch D; Tarakhovskaya E; Milrud S; Smolikova G; Tissier A; Vogt T; Sinz A; Brandt W; Birkemeyer C; Wessjohann LA; Frolov A
    J Biol Chem; 2017 Sep; 292(38):15758-15776. PubMed ID: 28611063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose-derived glycation sites in processed bovine milk.
    Milkovska-Stamenova S; Hoffmann R
    J Proteomics; 2016 Feb; 134():102-111. PubMed ID: 26743206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of dietary advanced glycation end-products in commercial cow, goat and soy protein based infant formulas.
    Xie Y; van der Fels-Klerx HJ; van Leeuwen SPJ; Fogliano V
    Food Chem; 2023 Jun; 411():135424. PubMed ID: 36652883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.
    Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B
    Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.
    Troise AD; Buonanno M; Fiore A; Monti SM; Fogliano V
    Food Chem; 2016 Dec; 212():722-9. PubMed ID: 27374589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana.
    Paudel G; Bilova T; Schmidt R; Greifenhagen U; Berger R; Tarakhovskaya E; Stöckhardt S; Balcke GU; Humbeck K; Brandt W; Sinz A; Vogt T; Birkemeyer C; Wessjohann L; Frolov A
    J Exp Bot; 2016 Dec; 67(22):6283-6295. PubMed ID: 27856706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maillard Proteomics: Opening New Pages.
    Soboleva A; Schmidt R; Vikhnina M; Grishina T; Frolov A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29231845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Chemically Labile Glycation Adducts in Seed Proteins: Case Study of Methylglyoxal-Derived Hydroimidazolone 1 (MG-H1).
    Antonova K; Vikhnina M; Soboleva A; Mehmood T; Heymich ML; Leonova T; Bankin M; Lukasheva E; Gensberger-Reigl S; Medvedev S; Smolikova G; Pischetsrieder M; Frolov A
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Snapshot of the Plant Glycated Proteome: STRUCTURAL, FUNCTIONAL, AND MECHANISTIC ASPECTS.
    Bilova T; Lukasheva E; Brauch D; Greifenhagen U; Paudel G; Tarakhovskaya E; Frolova N; Mittasch J; Balcke GU; Tissier A; Osmolovskaya N; Vogt T; Wessjohann LA; Birkemeyer C; Milkowski C; Frolov A
    J Biol Chem; 2016 Apr; 291(14):7621-36. PubMed ID: 26786108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products.
    Ishibashi Y; Matsui T; Nakamura N; Sotokawauchi A; Higashimoto Y; Yamagishi SI
    Diab Vasc Dis Res; 2017 Sep; 14(5):450-453. PubMed ID: 28631505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantification of bovine protein lactosylation sites in different milk products.
    Milkovska-Stamenova S; Hoffmann R
    J Proteomics; 2016 Feb; 134():112-126. PubMed ID: 26210590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.
    Milkovska-Stamenova S; Hoffmann R
    Food Chem; 2017 Apr; 221():489-495. PubMed ID: 27979232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digestibility of Bovine Serum Albumin and Peptidomics of the Digests: Effect of Glycation Derived from α-Dicarbonyl Compounds.
    Sheng B; Larsen LB; Le TT; Zhao D
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29561799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health.
    Gill V; Kumar V; Singh K; Kumar A; Kim JJ
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.
    Treibmann S; Hellwig A; Hellwig M; Henle T
    J Agric Food Chem; 2017 Dec; 65(48):10562-10570. PubMed ID: 29111707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of glycation and glycation sites of lysozyme by matrix-assisted laser desorption/ionization time of flight/time-of-flight mass spectrometry and Liquid chromatography-electrospray ionization tandem mass spectrometry.
    Ruan ED; Wang H; Ruan Y; Juáreza M
    Eur J Mass Spectrom (Chichester); 2014; 20(4):327-36. PubMed ID: 25420345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.