BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30430739)

  • 1. Pencil-Drawing Skin-Mountable Micro-Supercapacitors.
    Zhu S; Li Y; Zhu H; Ni J; Li Y
    Small; 2019 Jan; 15(3):e1804037. PubMed ID: 30430739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.
    Jeong KH; Lee HJ; Simpson MF; Jeong M
    J Nanosci Nanotechnol; 2016 May; 16(5):4620-5. PubMed ID: 27483800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.
    Morag A; Becker JY; Jelinek R
    ChemSusChem; 2017 Jul; 10(13):2736-2741. PubMed ID: 28474863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage.
    El-Kady MF; Kaner RB
    Nat Commun; 2013; 4():1475. PubMed ID: 23403576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.
    Zhang L; Zhu P; Zhou F; Zeng W; Su H; Li G; Gao J; Sun R; Wong CP
    ACS Nano; 2016 Jan; 10(1):1273-82. PubMed ID: 26694704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles.
    Xue M; Xie Z; Zhang L; Ma X; Wu X; Guo Y; Song W; Li Z; Cao T
    Nanoscale; 2011 Jul; 3(7):2703-8. PubMed ID: 21369565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft Hybrid Scaffold (SHS) Strategy for Realization of Ultrahigh Energy Density of Wearable Aqueous Supercapacitors.
    Shang J; Huang Q; Wang L; Yang Y; Li P; Zheng Z
    Adv Mater; 2020 Jan; 32(4):e1907088. PubMed ID: 31788889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-solid-state flexible ultrathin micro-supercapacitors based on graphene.
    Niu Z; Zhang L; Liu L; Zhu B; Dong H; Chen X
    Adv Mater; 2013 Aug; 25(29):4035-42. PubMed ID: 23716279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
    Xie B; Yang C; Zhang Z; Zou P; Lin Z; Shi G; Yang Q; Kang F; Wong CP
    ACS Nano; 2015 Jun; 9(6):5636-45. PubMed ID: 25938988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
    Yuan L; Lu XH; Xiao X; Zhai T; Dai J; Zhang F; Hu B; Wang X; Gong L; Chen J; Hu C; Tong Y; Zhou J; Wang ZL
    ACS Nano; 2012 Jan; 6(1):656-61. PubMed ID: 22182051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.
    Rusi ; Majid SR
    PLoS One; 2016; 11(5):e0154566. PubMed ID: 27182595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized graphene hydrogel-based high-performance supercapacitors.
    Xu Y; Lin Z; Huang X; Wang Y; Huang Y; Duan X
    Adv Mater; 2013 Oct; 25(40):5779-84. PubMed ID: 23900931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.
    Yu D; Goh K; Zhang Q; Wei L; Wang H; Jiang W; Chen Y
    Adv Mater; 2014 Oct; 26(39):6790-7. PubMed ID: 25182340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics.
    Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y
    Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.