BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30430739)

  • 21. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density.
    Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.
    Guo CX; Chitre AA; Lu X
    Phys Chem Chem Phys; 2014 Mar; 16(10):4672-8. PubMed ID: 24469241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes.
    Han ZJ; Bo Z; Seo DH; Pineda S; Wang Y; Yang HY; Ostrikov KK
    ChemSusChem; 2016 May; 9(9):1020-6. PubMed ID: 27059434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.
    Lu X; Zhai T; Zhang X; Shen Y; Yuan L; Hu B; Gong L; Chen J; Gao Y; Zhou J; Tong Y; Wang ZL
    Adv Mater; 2012 Feb; 24(7):938-44. PubMed ID: 22403832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene.
    Li L; Zhang J; Peng Z; Li Y; Gao C; Ji Y; Ye R; Kim ND; Zhong Q; Yang Y; Fei H; Ruan G; Tour JM
    Adv Mater; 2016 Feb; 28(5):838-45. PubMed ID: 26632264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors.
    Ren Y; Xu Q; Zhang J; Yang H; Wang B; Yang D; Hu J; Liu Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9689-97. PubMed ID: 24882146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile synthesis of low-defect-density graphene/MnO2 composite and its electrochemical performance.
    He G; Yuan Y; Wang L; Chen H; Sun X; Wang X
    J Nanosci Nanotechnol; 2013 Jan; 13(1):487-92. PubMed ID: 23646759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors.
    Chen Y; Han M; Tang Y; Bao J; Li S; Lan Y; Dai Z
    Chem Commun (Camb); 2015 Aug; 51(62):12377-80. PubMed ID: 26140676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pencil-paper on-skin electronics.
    Xu Y; Zhao G; Zhu L; Fei Q; Zhang Z; Chen Z; An F; Chen Y; Ling Y; Guo P; Ding S; Huang G; Chen PY; Cao Q; Yan Z
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18292-18301. PubMed ID: 32661158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials.
    Lyu L; Hooch Antink W; Kim YS; Kim CW; Hyeon T; Piao Y
    Small; 2021 Sep; 17(36):e2101974. PubMed ID: 34323350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elastic Fiber Supercapacitors for Wearable Energy Storage.
    Qin S; Seyedin S; Zhang J; Wang Z; Yang F; Liu Y; Chen J; Razal JM
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800103. PubMed ID: 29774612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paper-based transparent flexible thin film supercapacitors.
    Gao K; Shao Z; Wu X; Wang X; Zhang Y; Wang W; Wang F
    Nanoscale; 2013 Jun; 5(12):5307-11. PubMed ID: 23686244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cheap, High-Performance, and Wearable Mn Oxide Supercapacitors with Urea-LiClO
    Deng MJ; Chen KW; Che YC; Wang IJ; Lin CM; Chen JM; Lu KT; Liao YF; Ishii H
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):479-486. PubMed ID: 27978621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.