BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30431020)

  • 1. Heat transfer in rough nanofilms and nanowires using full band ab initio Monte Carlo simulation.
    Davier B; Larroque J; Dollfus P; Chaput L; Volz S; Lacroix D; Saint-Martin J
    J Phys Condens Matter; 2018 Dec; 30(49):495902. PubMed ID: 30431020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
    Yang L; Minnich AJ
    Sci Rep; 2017 Mar; 7():44254. PubMed ID: 28290484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient in-plane thermal transport in nanofilms with internal heating.
    Hua YC; Cao BY
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150811. PubMed ID: 27118903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport in kinked nanowires through simulation.
    Robillard AN; Gibson GW; Meyer R
    Beilstein J Nanotechnol; 2023; 14():586-602. PubMed ID: 37228743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source.
    Nghiem TT; Trannoy N; Randrianalisoa J
    Nanotechnology; 2019 Oct; 30(41):415403. PubMed ID: 31234151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing ballistic thermal conduction in segmented silicon nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    Nanoscale; 2019 Jul; 11(28):13407-13414. PubMed ID: 31276141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y; Li D; Hu Y; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Jul; 31(31):315709. PubMed ID: 32203947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Dependent Phonon Heat Transport in Nanoscale Gallium Oxide Thin Films.
    Xiao X; Mao Y; Meng B; Ma G; Hušeková K; Egyenes F; Rosová A; Dobročka E; Eliáš P; Ťapajna M; Gucmann F; Yuan C
    Small; 2024 May; 20(21):e2309961. PubMed ID: 38098343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the phonon confinement effect and boundary scattering in reducing the thermal conductivity of argon nanowire.
    Tretiakov KV; Hyżorek K
    J Chem Phys; 2021 Feb; 154(5):054702. PubMed ID: 33557530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires.
    Chen J; Hou Z; Chen H; Wang Z
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35995045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Heat Source Driven Heat Transport in GaN at Nanoscale: Electron-Phonon Monte Carlo Simulations and a Two Temperature Model.
    Muthukunnil Joseph A; Cao B
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.