These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30431040)

  • 1. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion.
    Kim JU; Lee S; Kang SJ; Kim TI
    Nanoscale; 2018 Nov; 10(46):21555-21574. PubMed ID: 30431040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Dual-Interfacial Liquid Metal Based Nanodroplet Architectures and Micro-Nanostructured Engineering for High Efficiency Solar Energy Harvesting.
    Yang S; Zhang Y; Bai J; He Y; Zhao X; Zhang J
    ACS Nano; 2022 Sep; 16(9):15086-15099. PubMed ID: 36069385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Sulfide-Based Plasmonic Photothermal Membrane for High-Efficiency Solar Vapor Generation.
    Tao F; Zhang Y; Yin K; Cao S; Chang X; Lei Y; Wang DS; Fan R; Dong L; Yin Y; Chen X
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35154-35163. PubMed ID: 30277387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolayer Plasmonic Nanoframes as Large-Area, Broadband Metasurface Absorbers.
    Li Y; Tanriover I; Zhou W; Hadibrata W; Dereshgi SA; Samanta D; Aydin K; Mirkin CA
    Small; 2022 Aug; 18(33):e2201171. PubMed ID: 35859524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh omnidirectional, broadband, and polarization-independent optical absorption over the visible wavelengths by effective dispersion engineering.
    Jin Y; Park J; Rah Y; Shim J; Yu K
    Sci Rep; 2019 Jul; 9(1):9866. PubMed ID: 31285525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation.
    Indriyati ; Primadona I; Permatasari FA; Irham MA; Nasir M; Iskandar F
    Nanoscale; 2021 Apr; 13(16):7523-7532. PubMed ID: 33870394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractory materials and plasmonics based perfect absorbers.
    Yao Y; Zhou J; Liu Z; Liu X; Fu G; Liu G
    Nanotechnology; 2021 Jan; 32(13):. PubMed ID: 33302265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
    Ren H; Tang M; Guan B; Wang K; Yang J; Wang F; Wang M; Shan J; Chen Z; Wei D; Peng H; Liu Z
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals.
    Ding F; Dai J; Chen Y; Zhu J; Jin Y; Bozhevolnyi SI
    Sci Rep; 2016 Dec; 6():39445. PubMed ID: 28000718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications.
    Yang B; Li C; Wang Z; Dai Q
    Adv Mater; 2022 Jul; 34(26):e2107351. PubMed ID: 35271744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing.
    Tian J; Zhu H; Chen J; Zheng X; Duan H; Pu K; Chen P
    Small; 2017 Jun; 13(22):. PubMed ID: 28445007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.