BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30431050)

  • 1. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy.
    Zhang K; Liu Y; Zhao J; Liu B
    Nanoscale; 2018 Nov; 10(46):21742-21747. PubMed ID: 30431050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres.
    Rasamani KD; Sun Y
    J Chem Phys; 2020 Feb; 152(8):084706. PubMed ID: 32113372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Plasmonic Catalysis Kinetics on Hot-Spot Engineered Nanoantennae.
    Nan L; Giráldez-Martínez J; Stefancu A; Zhu L; Liu M; Govorov AO; Besteiro LV; Cortés E
    Nano Lett; 2023 Apr; 23(7):2883-2889. PubMed ID: 37001024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO
    Teixeira IF; Homsi MS; Geonmonond RS; Rocha GFSR; Peng YK; Silva IF; Quiroz J; Camargo PHC
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering.
    Yin Z; Wang Y; Song C; Zheng L; Ma N; Liu X; Li S; Lin L; Li M; Xu Y; Li W; Hu G; Fang Z; Ma D
    J Am Chem Soc; 2018 Jan; 140(3):864-867. PubMed ID: 29301395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.
    Lu Y; Yu H; Chen S; Quan X; Zhao H
    Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO
    Moon SY; Song HC; Gwag EH; Nedrygailov II; Lee C; Kim JJ; Doh WH; Park JY
    Nanoscale; 2018 Dec; 10(47):22180-22188. PubMed ID: 30484456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes.
    Kontoleta E; Askes SHC; Garnett EC
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35713-35719. PubMed ID: 31475816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation.
    Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Effect of Native SiO
    Wang J; de Freitas IC; Alves TV; Ando RA; Fang Z; Camargo PHC
    Chemistry; 2017 May; 23(30):7185-7190. PubMed ID: 28398612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.