BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30431205)

  • 1. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis.
    Veggiani G; Huang H; Yates BP; Tong J; Kaneko T; Joshi R; Li SSC; Moran MF; Gish G; Sidhu SS
    Protein Sci; 2019 Feb; 28(2):403-413. PubMed ID: 30431205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered SH2 Domains for Targeted Phosphoproteomics.
    Martyn GD; Veggiani G; Kusebauch U; Morrone SR; Yates BP; Singer AU; Tong J; Manczyk N; Gish G; Sun Z; Kurinov I; Sicheri F; Moran MF; Moritz RL; Sidhu SS
    ACS Chem Biol; 2022 Jun; 17(6):1472-1484. PubMed ID: 35613471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage-Displayed SH2 Domain Libraries: From Ultrasensitive Tyrosine Phosphoproteome Probes to Translational Research.
    Martyn GD; Veggiani G
    Cold Spring Harb Protoc; 2024 May; 2024(5):107981. PubMed ID: 37197827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the phosphotyrosine binding pocket of Fyn SH2 domain led to the identification of novel SH2 superbinders.
    Li S; Zou Y; Zhao D; Yin Y; Song J; He N; Liu H; Qian D; Li L; Huang H
    Protein Sci; 2021 Mar; 30(3):558-570. PubMed ID: 33314411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superbinder SH2 domains act as antagonists of cell signaling.
    Kaneko T; Huang H; Cao X; Li X; Li C; Voss C; Sidhu SS; Li SS
    Sci Signal; 2012 Sep; 5(243):ra68. PubMed ID: 23012655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 1999 Nov; 293(4):971-85. PubMed ID: 10543978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Loops in a Single SH2 Domain Are Capable of Encoding the Spectrum of Specificity of the SH2 Family.
    Liu H; Huang H; Voss C; Kaneko T; Qin WT; Sidhu S; Li SS
    Mol Cell Proteomics; 2019 Feb; 18(2):372-382. PubMed ID: 30482845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering SH2 Domains with Tailored Specificities and Affinities.
    Martyn GD; Veggiani G; Sidhu SS
    Methods Mol Biol; 2023; 2705():307-348. PubMed ID: 37668982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.
    Bian Y; Li L; Dong M; Liu X; Kaneko T; Cheng K; Liu H; Voss C; Cao X; Wang Y; Litchfield D; Ye M; Li SS; Zou H
    Nat Chem Biol; 2016 Nov; 12(11):959-966. PubMed ID: 27642862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loops govern SH2 domain specificity by controlling access to binding pockets.
    Kaneko T; Huang H; Zhao B; Li L; Liu H; Voss CK; Wu C; Schiller MR; Li SS
    Sci Signal; 2010 May; 3(120):ra34. PubMed ID: 20442417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides.
    Ye B; Akamatsu M; Shoelson SE; Wolf G; Giorgetti-Peraldi S; Yan X; Roller PP; Burke TR
    J Med Chem; 1995 Oct; 38(21):4270-5. PubMed ID: 7473554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity.
    Stein EG; Ghirlando R; Hubbard SR
    J Biol Chem; 2003 Apr; 278(15):13257-64. PubMed ID: 12551896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of a large family of superbinding bacterial SH2 domains.
    Kaneko T; Stogios PJ; Ruan X; Voss C; Evdokimova E; Skarina T; Chung A; Liu X; Li L; Savchenko A; Ensminger AW; Li SS
    Nat Commun; 2018 Oct; 9(1):4549. PubMed ID: 30382091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A.
    Li SC; Gish G; Yang D; Coffey AJ; Forman-Kay JD; Ernberg I; Kay LE; Pawson T
    Curr Biol; 1999 Dec; 9(23):1355-62. PubMed ID: 10607564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition by SH2 domains.
    Bradshaw JM; Waksman G
    Adv Protein Chem; 2002; 61():161-210. PubMed ID: 12461824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface.
    Lubman OY; Waksman G
    J Mol Biol; 2002 Feb; 316(2):291-304. PubMed ID: 11851339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain.
    Chen CH; Piraner D; Gorenstein NM; Geahlen RL; Beth Post C
    Biopolymers; 2013 Nov; 99(11):897-907. PubMed ID: 23955592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive Approaches for the Assay of the Global Protein Tyrosine Phosphorylation in Complex Samples Using a Mutated SH2 Domain.
    Li Y; Wang Y; Dong M; Zou H; Ye M
    Anal Chem; 2017 Feb; 89(4):2304-2311. PubMed ID: 28192934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples.
    Chu B; He A; Tian Y; He W; Chen P; Hu J; Xu R; Zhou W; Zhang M; Yang P; Li SSC; Sun Y; Li P; Hunter T; Tian R
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):E8863-E8872. PubMed ID: 30190427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.