BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30431265)

  • 1. Allosteric Control of N-Acetyl-Aspartate Hydrolysis by the Y231C and F295S Mutants of Human Aspartoacylase.
    Kots ED; Khrenova MG; Nemukhin AV
    J Chem Inf Model; 2019 May; 59(5):2299-2308. PubMed ID: 30431265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Protein Dimeric Interface in Allosteric Inhibition of N-Acetyl-Aspartate Hydrolysis by Human Aspartoacylase.
    Kots ED; Lushchekina SV; Varfolomeev SD; Nemukhin AV
    J Chem Inf Model; 2017 Aug; 57(8):1999-2008. PubMed ID: 28737906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Faces of N-Acetylaspartate: Activator, Substrate, and Inhibitor of Human Aspartoacylase.
    Khrenova MG; Kots ED; Varfolomeev SD; Lushchekina SV; Nemukhin AV
    J Phys Chem B; 2017 Oct; 121(40):9389-9397. PubMed ID: 28903559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease.
    Bitto E; Bingman CA; Wesenberg GE; McCoy JG; Phillips GN
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):456-61. PubMed ID: 17194761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease.
    Kocak A; Yildiz M
    J Mol Graph Model; 2017 Jun; 74():44-53. PubMed ID: 28349879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartoacylase catalytic deficiency as the cause of Canavan disease: a structural perspective.
    Wijayasinghe YS; Pavlovsky AG; Viola RE
    Biochemistry; 2014 Aug; 53(30):4970-8. PubMed ID: 25003821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of aspartoacylase: implications for Canavan disease.
    Hershfield JR; Pattabiraman N; Madhavarao CN; Namboodiri MA
    Brain Res; 2007 May; 1148():1-14. PubMed ID: 17391648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the mechanism of human brain aspartoacylase through the binding of an intermediate analogue.
    Le Coq J; Pavlovsky A; Malik R; Sanishvili R; Xu C; Viola RE
    Biochemistry; 2008 Mar; 47(11):3484-92. PubMed ID: 18293939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme.
    George Priya Doss C; Zayed H
    Metab Brain Dis; 2017 Dec; 32(6):2105-2118. PubMed ID: 28879565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murine aspartoacylase: cloning, expression and comparison with the human enzyme.
    Namboodiri MA; Corigliano-Murphy A; Jiang G; Rollag M; Provencio I
    Brain Res Mol Brain Res; 2000 May; 77(2):285-9. PubMed ID: 10837925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA; Beernink PT
    Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the zinc binding ligands and the catalytic residue in human aspartoacylase, an enzyme involved in Canavan disease.
    Herga S; Berrin JG; Perrier J; Puigserver A; Giardina T
    FEBS Lett; 2006 Oct; 580(25):5899-904. PubMed ID: 17027983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglial aspartoacylase.
    Francis JS; Wojtas I; Markov V; Gray SJ; McCown TJ; Samulski RJ; Bilaniuk LT; Wang DJ; De Vivo DC; Janson CG; Leone P
    Neurobiol Dis; 2016 Dec; 96():323-334. PubMed ID: 27717881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between enzyme properties and disease progression in Canavan disease.
    Zano S; Wijayasinghe YS; Malik R; Smith J; Viola RE
    J Inherit Metab Dis; 2013 Jan; 36(1):1-6. PubMed ID: 22850825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and preliminary characterization of brain aspartoacylase.
    Moore RA; Le Coq J; Faehnle CR; Viola RE
    Arch Biochem Biophys; 2003 May; 413(1):1-8. PubMed ID: 12706335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, characterization, and localization of aspartoacylase from bovine brain.
    Kaul R; Casanova J; Johnson AB; Tang P; Matalon R
    J Neurochem; 1991 Jan; 56(1):129-35. PubMed ID: 1987315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease.
    McPhee SW; Francis J; Janson CG; Serikawa T; Hyland K; Ong EO; Raghavan SS; Freese A; Leone P
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):112-21. PubMed ID: 15857674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modeling of p.V31F variant in the aspartoacylase gene.
    Krishnamoorthy N; Zayed H
    Metab Brain Dis; 2016 Jun; 31(3):723-6. PubMed ID: 26797702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and pH-dependent allosteric regulation of human β-ureidopropionase, an enzyme involved in anticancer drug metabolism.
    Maurer D; Lohkamp B; Krumpel M; Widersten M; Dobritzsch D
    Biochem J; 2018 Jul; 475(14):2395-2416. PubMed ID: 29976570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity.
    Mendes MI; Smith DE; Pop A; Lennertz P; Fernandez Ojeda MR; Kanhai WA; van Dooren SJ; Anikster Y; Barić I; Boelen C; Campistol J; de Boer L; Kariminejad A; Kayserili H; Roubertie A; Verbruggen KT; Vianey-Saban C; Williams M; Salomons GS
    Hum Mutat; 2017 May; 38(5):524-531. PubMed ID: 28101991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.