These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30431395)

  • 1. Pseudo-source parameters for flares: Derivation, implementation, and comparison.
    Zelensky MJ; Zelt BW
    J Air Waste Manag Assoc; 2019 Apr; 69(4):450-458. PubMed ID: 30431395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRCI ambient NO
    Panek JA; McCarthy JM; Huth AZ; Krol AJ; Nowak C
    J Air Waste Manag Assoc; 2020 May; 70(5):504-521. PubMed ID: 32186474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of gas flaring emissions in the Niger delta: Impact of prevailing meteorological conditions and flare characteristics.
    Fawole OG; Cai X; Abiye OE; MacKenzie AR
    Environ Pollut; 2019 Mar; 246():284-293. PubMed ID: 30557802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development, evaluation, and implementation of building downwash and plume rise enhancements in AERMOD.
    Petersen RL; Paumier JO; Guerra SA
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1423-1441. PubMed ID: 36070482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of low wind modeling approaches for two tall-stack databases.
    Paine R; Samani O; Kaplan M; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from a beef cattle feedlot.
    Bonifacio HF; Maghirang RG; Razote EB; Trabue SL; Prueger JH
    J Air Waste Manag Assoc; 2013 May; 63(5):545-56. PubMed ID: 23786146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment.
    Silverman KC; Tell JG; Sargent EV; Qiu Z
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1439-46. PubMed ID: 18200928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-source air quality impact of a distributed natural gas combined heat and power facility.
    Yang B; Gu J; Zhang T; Zhang KM
    Environ Pollut; 2019 Mar; 246():650-657. PubMed ID: 30611941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of NO2 predictions by the plume volume molar ratio method (PVMRM) and ozone limiting method (OLM) in AERMOD using new field observations.
    Hendrick EM; Tino VR; Hanna SR; Egan BA
    J Air Waste Manag Assoc; 2013 Jul; 63(7):844-54. PubMed ID: 23926853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of CO, CO
    Mousavi SS; Goudarzi G; Sabzalipour S; Rouzbahani MM; Mobarak Hassan E
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):56996-57008. PubMed ID: 34081282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AERCOARE: An overwater meteorological preprocessor for AERMOD.
    Wong H; Elleman R; Wolvovsky E; Richmond K; Paumier J
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1121-1140. PubMed ID: 27336680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical review of the building downwash algorithms in AERMOD.
    Petersen RL; Guerra SA; Bova AS
    J Air Waste Manag Assoc; 2017 Aug; 67(8):826-835. PubMed ID: 28080305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of model performance between AERMOD and AUSTAL2000.
    Langner C; Klemm O
    J Air Waste Manag Assoc; 2011 Jun; 61(6):640-6. PubMed ID: 21751580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.
    Yu H; Thé J
    J Air Waste Manag Assoc; 2017 May; 67(5):517-536. PubMed ID: 27650217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOVES-Matrix and distributed computing for microscale line source dispersion analysis.
    Liu H; Xu X; Rodgers MO; Xu YA; Guensler RL
    J Air Waste Manag Assoc; 2017 Jul; 67(7):763-775. PubMed ID: 28166458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying flare combustion efficiency using an imaging Fourier transform spectrometer.
    Lapeyre P; Miguel RB; Nagorski MC; Gagnon JP; Chamberland M; Turcotte C; Daun KJ
    J Air Waste Manag Assoc; 2024 May; 74(5):319-334. PubMed ID: 38377314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of the PRIME plume rise and building downwash model.
    Schulman LL; Strimaitis DG; Scire JS
    J Air Waste Manag Assoc; 2000 Mar; 50(3):378-90. PubMed ID: 10734710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas flaring and resultant air pollution: A review focusing on black carbon.
    Fawole OG; Cai XM; MacKenzie AR
    Environ Pollut; 2016 Sep; 216():182-197. PubMed ID: 27262132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the incipient smoke point for steam-/air-assisted and nonassisted flares.
    Chen DH; Alphones A
    J Air Waste Manag Assoc; 2019 Jan; 69(1):119-130. PubMed ID: 30230968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of two dispersion models (AERMOD and ISCST3) to input parameters for a rural ground-level area source.
    Faulkner WB; Shaw BW; Grosch T
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1288-96. PubMed ID: 18939775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.