These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30433771)

  • 1. Enhancing Protein Stability with Genetically Encoded Noncanonical Amino Acids.
    Li JC; Liu T; Wang Y; Mehta AP; Schultz PG
    J Am Chem Soc; 2018 Nov; 140(47):15997-16000. PubMed ID: 30433771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single Reactive Noncanonical Amino Acid Is Able to Dramatically Stabilize Protein Structure.
    Li JC; Nastertorabi F; Xuan W; Han GW; Stevens RC; Schultz PG
    ACS Chem Biol; 2019 Jun; 14(6):1150-1153. PubMed ID: 31181898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized homoserine o-succinyltransferases (MetA) or L-methionine partially recovers the growth defect in Escherichia coli lacking ATP-dependent proteases or the DnaK chaperone.
    Mordukhova EA; Kim D; Pan JG
    BMC Microbiol; 2013 Jul; 13():179. PubMed ID: 23898868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase.
    Mordukhova EA; Lee HS; Pan JG
    Appl Environ Microbiol; 2008 Dec; 74(24):7660-8. PubMed ID: 18978085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of proteins with genetically encoded "chemical warheads".
    Liu CC; Mack AV; Brustad EM; Mills JH; Groff D; Smider VV; Schultz PG
    J Am Chem Soc; 2009 Jul; 131(28):9616-7. PubMed ID: 19555063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase.
    Coe DM; Viola RE
    Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli.
    Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing protein stability with extended disulfide bonds.
    Liu T; Wang Y; Luo X; Li J; Reed SA; Xiao H; Young TS; Schultz PG
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5910-5. PubMed ID: 27162342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth.
    Koh M; Yao A; Gleason PR; Mills JH; Schultz PG
    J Am Chem Soc; 2019 Oct; 141(41):16213-16216. PubMed ID: 31580059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of homoserine-O-succinyltransferase (MetA) decreases the frequency of persisters in Escherichia coli under stressful conditions.
    Mordukhova EA; Pan JG
    PLoS One; 2014; 9(10):e110504. PubMed ID: 25329174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.
    Zheng S; Kwon I
    Biotechnol Bioeng; 2013 Sep; 110(9):2361-70. PubMed ID: 23568807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An expanding genetic code.
    Cropp TA; Schultz PG
    Trends Genet; 2004 Dec; 20(12):625-30. PubMed ID: 15522458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Engineering of Homoserine O-Succinyltransferase from
    Sagong HY; Lee D; Kim IK; Kim KJ
    J Agric Food Chem; 2022 Feb; 70(5):1571-1578. PubMed ID: 35084172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme.
    Rotem O; Biran D; Ron EZ
    Res Microbiol; 2013 Jan; 164(1):12-6. PubMed ID: 23085540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase.
    Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL
    Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the active site of homoserine trans-succinylase.
    Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ
    FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid.
    Sato S; Mimasu S; Sato A; Hino N; Sakamoto K; Umehara T; Yokoyama S
    Biochemistry; 2011 Jan; 50(2):250-7. PubMed ID: 21128684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit interactions as mediated by "non-interface" residues in living cells for multiple homo-oligomeric proteins.
    Fu X; Wang Y; Song X; Shi X; Shao H; Liu Y; Zhang M; Chang Z
    Biochem Biophys Res Commun; 2019 Apr; 512(1):100-105. PubMed ID: 30871775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.
    Supekova L; Zambaldo C; Choi S; Lim R; Luo X; Kazane SA; Young TS; Schultz PG
    Bioorg Med Chem Lett; 2018 May; 28(9):1570-1573. PubMed ID: 29625824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.