These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30433776)

  • 1. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package.
    Marion A; Gokcan H; Monard G
    J Chem Inf Model; 2019 Jan; 59(1):206-214. PubMed ID: 30433776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The implementation of a fast and accurate QM/MM potential method in Amber.
    Walker RC; Crowley MF; Case DA
    J Comput Chem; 2008 May; 29(7):1019-31. PubMed ID: 18072177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions.
    Zhou Y; Wang S; Li Y; Zhang Y
    Methods Enzymol; 2016; 577():105-18. PubMed ID: 27498636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMPIRE: a highly parallel semiempirical molecular orbital program: 3: Born-Oppenheimer molecular dynamics.
    Margraf JT; Hennemann M; Clark T
    J Mol Model; 2020 Feb; 26(3):43. PubMed ID: 32009184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method.
    Zheng G; Niklasson AM; Karplus M
    J Chem Phys; 2011 Jul; 135(4):044122. PubMed ID: 21806105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of liquid water using semiempirical Hamiltonians and the divide and conquer approach.
    Monard G; Bernal-Uruchurtu MI; van der Vaart A; Merz KM; Ruiz-López MF
    J Phys Chem A; 2005 Apr; 109(15):3425-32. PubMed ID: 16833679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-based quantum mechanical methods for periodic systems with Ewald summation and mean image charge convention for long-range electrostatic interactions.
    Zhang P; Truhlar DG; Gao J
    Phys Chem Chem Phys; 2012 Jun; 14(21):7821-9. PubMed ID: 22552612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipolar Ewald methods, 1: theory, accuracy, and performance.
    Giese TJ; Panteva MT; Chen H; York DM
    J Chem Theory Comput; 2015 Feb; 11(2):436-50. PubMed ID: 25691829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study.
    Ibrahim MA
    J Chem Inf Model; 2011 Oct; 51(10):2549-59. PubMed ID: 21942911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimum strategy for solution chemistry using semiempirical molecular orbital method. II. Primary importance of reproducing electrostatic interaction in the QM/MM framework.
    Koyano Y; Takenaka N; Nakagawa Y; Nagaoka M
    J Comput Chem; 2010 Nov; 31(14):2628-41. PubMed ID: 20740563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.
    Nam K
    J Chem Theory Comput; 2013 Aug; 9(8):3393-403. PubMed ID: 26584095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.
    Fox SJ; Pittock C; Fox T; Tautermann CS; Malcolm N; Skylaris CK
    J Chem Phys; 2011 Dec; 135(22):224107. PubMed ID: 22168680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Menezes F; Popowicz GM
    J Chem Inf Model; 2022 Aug; 62(16):3685-3694. PubMed ID: 35930308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic Boundary Conditions in QM/MM Calculations: Implementation and Tests.
    Vasilevskaya T; Thiel W
    J Chem Theory Comput; 2016 Aug; 12(8):3561-70. PubMed ID: 27420296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient multipole model and linear scaling of NDDO-based methods.
    Tokmachev AM; Tchougréeff AL
    J Phys Chem A; 2005 Aug; 109(33):7613-20. PubMed ID: 16834132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.
    Das S; Nam K; Major DT
    J Chem Theory Comput; 2018 Mar; 14(3):1695-1705. PubMed ID: 29446946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch.
    Zhou G; Nebgen B; Lubbers N; Malone W; Niklasson AMN; Tretiak S
    J Chem Theory Comput; 2020 Aug; 16(8):4951-4962. PubMed ID: 32609513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using quantum mechanical approaches to study biological systems.
    Merz KM
    Acc Chem Res; 2014 Sep; 47(9):2804-11. PubMed ID: 25099338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipolar Ewald methods, 2: applications using a quantum mechanical force field.
    Giese TJ; Panteva MT; Chen H; York DM
    J Chem Theory Comput; 2015 Feb; 11(2):451-61. PubMed ID: 25691830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.