These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3043553)

  • 1. Epinephrine in mammalian brain.
    Mefford IN
    Prog Neuropsychopharmacol Biol Psychiatry; 1988; 12(4):365-88. PubMed ID: 3043553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are there epinephrine neurons in rat brain?
    Mefford IN
    Brain Res; 1987 Nov; 434(4):383-95. PubMed ID: 3319049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain epinephrine systems: detailed comparison of adrenergic and noradrenergic metabolism, receptor number and in vitro regulation, in two inbred rat strains.
    Vantini G; Perry BD; Guchhait RB; U'Prichard DC; Stolk JM
    Brain Res; 1984 Mar; 296(1):49-65. PubMed ID: 6143593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of adrenergic fibers in rat spinal cord in relationship to adrenal preganglionic neurons.
    Bernstein-Goral H; Bohn MC
    J Neurosci Res; 1988; 21(2-4):333-51. PubMed ID: 3216427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of compartmentalization of epinephrine in the regulation of phenylethanolamine N-methyltransferase synthesis in rat adrenal medulla.
    Burke WJ; Davis JW; Joh TH
    Endocrinology; 1983 Sep; 113(3):1102-10. PubMed ID: 6872952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of phenylethanolamine N-methyltransferase cell bodies, axons, and terminals in monkey brainstem: an immunohistochemical mapping study.
    Carlton SM; Honda CN; Denoroy L
    J Comp Neurol; 1989 Sep; 287(3):273-85. PubMed ID: 2778106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the functional role of brain adrenergic neurons: chronic effects of phenylethanolamine N-methyltransferase inhibitors and alpha adrenergic receptor antagonists on brain norepinephrine metabolism.
    Stolk JM; Vantini G; Perry BD; Guchhait RB; U'Prichard DC
    J Pharmacol Exp Ther; 1984 Sep; 230(3):577-86. PubMed ID: 6147403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural evidence for convergence of enkephalin and adrenaline-containing axon terminals on common targets and their presynaptic associations in the rat nucleus locus coeruleus.
    Van Bockstaele EJ; Chan J; Biswas A
    Brain Res; 1996 Apr; 718(1-2):61-75. PubMed ID: 8925305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of brainstem and adrenal circadian patterns of epinephrine synthesis.
    Turner BB; Wilens TE; Schroeder KA; Katz RJ; Carroll BJ
    Neuroendocrinology; 1981 May; 32(5):257-61. PubMed ID: 7242852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for retrograde degeneration of epinephrine neurons in Alzheimer's disease.
    Burke WJ; Chung HD; Huang JS; Huang SS; Haring JH; Strong R; Marshall GL; Joh TH
    Ann Neurol; 1988 Oct; 24(4):532-6. PubMed ID: 3239955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacology of brain epinephrine neurons.
    Fuller RW
    Annu Rev Pharmacol Toxicol; 1982; 22():31-55. PubMed ID: 6805416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylethanolamine N-methyltransferase gene expression in adrenergic neurons of spontaneously hypertensive rats.
    Grandbois J; Khurana S; Graff K; Nguyen P; Meltz L; Tai TC
    Neurosci Lett; 2016 Dec; 635():103-110. PubMed ID: 27769893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation between hypothalamic catecholamine levels and epinephrine-forming enzyme activity after midbrain hemitransections in the rat.
    Saavedra JM; Fernandez-Pardal J; Ross C; Reis D
    Brain Res; 1983 Oct; 276(2):367-71. PubMed ID: 6605179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in brain catecholamine responses to a single footshock.
    Welsh KA; Gold PE
    Neurobiol Aging; 1984; 5(1):55-9. PubMed ID: 6738786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: catecholamine content and spinal projections.
    Goodchild AK; Llewellyn-Smith IJ; Sun QJ; Chalmers J; Cunningham AM; Pilowsky PM
    J Comp Neurol; 2000 Aug; 424(3):547-62. PubMed ID: 10906719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenaline neurons and PNMT activity in the brain and spinal cord of genetically hypertensive rats and rats with DOCA--salt hypertension.
    Chalmers JP; Howe PR; Wallmann Y; Tumuls I
    Clin Sci (Lond); 1981 Dec; 61 Suppl 7():219s-221s. PubMed ID: 7318327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice.
    Puskás N; Papp RS; Gallatz K; Palkovits M
    Peptides; 2010 Aug; 31(8):1589-97. PubMed ID: 20434498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dexamethasone on phenylethanolamine N-methyl-transferase (PNMT) and adrenaline (A) in the brains of adult and neonatal rats.
    Moore KE; Phillipson OT
    Br J Pharmacol; 1975 Mar; 53(3):453P-454P. PubMed ID: 1137752
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of monoamine oxidase inhibition on catecholamine levels: evidence for synthesis but not storage of epinephrine in rat spinal cord.
    Sved AF
    Brain Res; 1990 Apr; 512(2):253-8. PubMed ID: 2354362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PNMT-containing catecholaminergic neurons are not necessarily adrenergic.
    Sved AF
    Brain Res; 1989 Feb; 481(1):113-8. PubMed ID: 2706454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.