BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 304360)

  • 1. High-order fluorescence and exciton interaction in photosynthetic bacteria.
    Chu Kung M; DeVault D
    Biochim Biophys Acta; 1978 Feb; 501(2):217-31. PubMed ID: 304360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria.
    Monger TG; Cogdell RJ; Parson WW
    Biochim Biophys Acta; 1976 Oct; 449(1):136-53. PubMed ID: 823977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the fluorescence emission kinetics of the photosynthetic apparatus of Rhodopseudomonas sphaeroides, strain 1760-1, on a picosecond pulse fluorometer.
    Paschenko VZ; Kononenko AA; Protasov SP; Rubin AB; Rubin LB; Uspenskaya NY
    Biochim Biophys Acta; 1977 Sep; 461(3):403-12. PubMed ID: 302719
    [No Abstract]   [Full Text] [Related]  

  • 4. Reconstituted energy transfer from antenna pigment-protein to reaction centres isolated from Rhodopseudomonas sphaeroides.
    Heathcote P; Clayton RK
    Biochim Biophys Acta; 1977 Mar; 459(3):506-15. PubMed ID: 300249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus.
    Monger TG; Parson WW
    Biochim Biophys Acta; 1977 Jun; 460(3):393-407. PubMed ID: 301747
    [No Abstract]   [Full Text] [Related]  

  • 6. Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas speroides.
    Lutz M; Kleo J
    Biochem Biophys Res Commun; 1976 Apr; 69(3):711-7. PubMed ID: 1083733
    [No Abstract]   [Full Text] [Related]  

  • 7. Anomalous energy transfer behaviour of light absorbed by bacteriochlorophyll in several photosynthetic bacteria.
    Ebrey TG
    Biochim Biophys Acta; 1971 Dec; 253(2):385-95. PubMed ID: 5002474
    [No Abstract]   [Full Text] [Related]  

  • 8. Bacteriochlorophyll a-types in chromatophore and subchromatophore preparations from Rhodopseudomonas sphaeroides.
    Miyazaki T; Morita S; Hatano M; Nozawa T
    J Biochem; 1979 Nov; 86(5):1411-7. PubMed ID: 316431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical.
    McElroy JD; Feher G; Mauzerall DC
    Biochim Biophys Acta; 1972 May; 267(2):363-74. PubMed ID: 4339582
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of deuteration on the kinetics of photoinduced electron transport in the reaction centers of purple bacteria].
    Noks PP; Kononenko AA; Rubin AB
    Biofizika; 1980; 25(2):239-41. PubMed ID: 6966162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Woodbury NW; Parson WW
    Biochim Biophys Acta; 1986 Jul; 850(2):197-210. PubMed ID: 3087422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis.
    Rockley MG; Windsor MW; Cogdell RJ; Parson WW
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2251-5. PubMed ID: 1079602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ON THE MORPHOGENESIS OF BACTERIAL "CHROMATOPHORES" (THYLAKOIDS) AND ON THE SYNTHESIS OF BACTERIOCHLOROPHYLL IN RHODOPSEUDOMONAS SPHEROIDES AND RHODOSPIRILLUM RUBRUM].
    DREWS G; GIESBRECHT P
    Zentralbl Bakteriol Orig; 1963 Dec; 190():508-35. PubMed ID: 14166428
    [No Abstract]   [Full Text] [Related]  

  • 14. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S; Miyazaki T
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced red shift of the Qx absorption band of light-harvesting bacteriochlorophyll in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides.
    Bowyer JR; Crofts AR
    Arch Biochem Biophys; 1981 Apr; 207(2):416-26. PubMed ID: 6972735
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy transfer between the carotenoid and the bacteriochlorophyll within the B-800-850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides.
    Cogdell RJ; Hipkins MF; MacDonald W; Truscott TG
    Biochim Biophys Acta; 1981 Jan; 634(1):191-202. PubMed ID: 6970595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Possible role of macromolecular components in the functioning of photosynthetic reaction centers of purple bacteria].
    Noks PP; Lukashev EP; Kononenko AA; Venediktov PS; Rubin AB
    Mol Biol (Mosk); 1977; 11(5):1090-9. PubMed ID: 109747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of absorption and fluorescence spectra of bacteriochlorophylls in vivo and in vitro.
    Goedheer JC
    Biochim Biophys Acta; 1972 Aug; 275(2):169-76. PubMed ID: 4627554
    [No Abstract]   [Full Text] [Related]  

  • 19. [Spectral position of the principal absorption band of pigment complex P870 and the kinetics of photo-induced oxidoreductions in the reaction centers and chromatophores of purple bacteria with preparations at different temperatures and having different degrees of hydration].
    Noks PP; Kononenko AA; Rubin AB
    Mol Biol (Mosk); 1977; 11(4):933-40. PubMed ID: 109746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria.
    Holmes NG; van Grondelle R; Duysens LN
    Biochim Biophys Acta; 1978 Jul; 503(1):26-36. PubMed ID: 96856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.