BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 30439594)

  • 1. Phenotypic and functional differences between senescent and aged murine microglia.
    Stojiljkovic MR; Ain Q; Bondeva T; Heller R; Schmeer C; Witte OW
    Neurobiol Aging; 2019 Feb; 74():56-69. PubMed ID: 30439594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli.
    Hall BM; Balan V; Gleiberman AS; Strom E; Krasnov P; Virtuoso LP; Rydkina E; Vujcic S; Balan K; Gitlin II; Leonova KI; Consiglio CR; Gollnick SO; Chernova OB; Gudkov AV
    Aging (Albany NY); 2017 Aug; 9(8):1867-1884. PubMed ID: 28768895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro lifespan and senescence mechanisms of human nucleus pulposus chondrocytes.
    Jeong SW; Lee JS; Kim KW
    Spine J; 2014 Mar; 14(3):499-504. PubMed ID: 24345469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs.
    Kim KW; Chung HN; Ha KY; Lee JS; Kim YY
    Spine J; 2009 Aug; 9(8):658-66. PubMed ID: 19540815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profiles of p53-, p16(INK4a)-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells.
    Kim H; You S; Farris J; Kong BW; Christman SA; Foster LK; Foster DN
    Exp Cell Res; 2002 Jan; 272(2):199-208. PubMed ID: 11777345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells.
    Hall BM; Balan V; Gleiberman AS; Strom E; Krasnov P; Virtuoso LP; Rydkina E; Vujcic S; Balan K; Gitlin I; Leonova K; Polinsky A; Chernova OB; Gudkov AV
    Aging (Albany NY); 2016 Jul; 8(7):1294-315. PubMed ID: 27391570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cells exhibiting strong
    Liu JY; Souroullas GP; Diekman BO; Krishnamurthy J; Hall BM; Sorrentino JA; Parker JS; Sessions GA; Gudkov AV; Sharpless NE
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2603-2611. PubMed ID: 30683717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response.
    Jurk D; Wang C; Miwa S; Maddick M; Korolchuk V; Tsolou A; Gonos ES; Thrasivoulou C; Saffrey MJ; Cameron K; von Zglinicki T
    Aging Cell; 2012 Dec; 11(6):996-1004. PubMed ID: 22882466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice.
    Yousefzadeh MJ; Zhao J; Bukata C; Wade EA; McGowan SJ; Angelini LA; Bank MP; Gurkar AU; McGuckian CA; Calubag MF; Kato JI; Burd CE; Robbins PD; Niedernhofer LJ
    Aging Cell; 2020 Mar; 19(3):e13094. PubMed ID: 31981461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telomere-independent cellular senescence in human fetal cardiomyocytes.
    Ball AJ; Levine F
    Aging Cell; 2005 Feb; 4(1):21-30. PubMed ID: 15659210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Senescent Cells in the Bone Microenvironment.
    Farr JN; Fraser DG; Wang H; Jaehn K; Ogrodnik MB; Weivoda MM; Drake MT; Tchkonia T; LeBrasseur NK; Kirkland JL; Bonewald LF; Pignolo RJ; Monroe DG; Khosla S
    J Bone Miner Res; 2016 Nov; 31(11):1920-1929. PubMed ID: 27341653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telomere uncapping during in vitro T-lymphocyte senescence.
    Chebel A; Bauwens S; Gerland LM; Belleville A; Urbanowicz I; de Climens AR; Tourneur Y; Chien WW; Catallo R; Salles G; Gilson E; Ffrench M
    Aging Cell; 2009 Feb; 8(1):52-64. PubMed ID: 19077045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms.
    Davis T; Singhrao SK; Wyllie FS; Haughton MF; Smith PJ; Wiltshire M; Wynford-Thomas D; Jones CJ; Faragher RG; Kipling D
    J Cell Sci; 2003 Apr; 116(Pt 7):1349-57. PubMed ID: 12615976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.
    Wang R; Yu Z; Sunchu B; Shoaf J; Dang I; Zhao S; Caples K; Bradley L; Beaver LM; Ho E; Löhr CV; Perez VI
    Aging Cell; 2017 Jun; 16(3):564-574. PubMed ID: 28371119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans.
    Martínez-Zamudio RI; Dewald HK; Vasilopoulos T; Gittens-Williams L; Fitzgerald-Bocarsly P; Herbig U
    Aging Cell; 2021 May; 20(5):e13344. PubMed ID: 33939265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p16
    Novais EJ; Diekman BO; Shapiro IM; Risbud MV
    Matrix Biol; 2019 Sep; 82():54-70. PubMed ID: 30811968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity.
    Chandra A; Lagnado AB; Farr JN; Doolittle M; Tchkonia T; Kirkland JL; LeBrasseur NK; Robbins PD; Niedernhofer LJ; Ikeno Y; Passos JF; Monroe DG; Pignolo RJ; Khosla S
    Aging Cell; 2022 May; 21(5):e13602. PubMed ID: 35363946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of an aging model of Sca-1+ hematopoietic stem cell and studies on its relative biological mechanisms.
    Zhou Y; Yang B; Yao X; Wang Y
    In Vitro Cell Dev Biol Anim; 2011 Feb; 47(2):149-56. PubMed ID: 21132465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells.
    Murakami T; Inagaki N; Kondoh H
    Front Endocrinol (Lausanne); 2022; 13():869414. PubMed ID: 35432205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Events in the immortalizing process of primary human mammary epithelial cells by the catalytic subunit of human telomerase.
    Kim H; Farris J; Christman SA; Kong BW; Foster LK; O'Grady SM; Foster DN
    Biochem J; 2002 Aug; 365(Pt 3):765-72. PubMed ID: 11978176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.