These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30439657)

  • 1. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM).
    Jaafari J; Yaghmaeian K
    Chemosphere; 2019 Feb; 217():447-455. PubMed ID: 30439657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.
    Jones BO; John OO; Luke C; Ochieng A; Bassey BJ
    J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III).
    Akhtar N; Iqbal M; Zafar SI; Iqbal J
    J Environ Sci (China); 2008; 20(2):231-9. PubMed ID: 18574966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm.
    Sultana N; Hossain SMZ; Mohammed ME; Irfan MF; Haq B; Faruque MO; Razzak SA; Hossain MM
    Sci Rep; 2020 Sep; 10(1):15068. PubMed ID: 32934284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research.
    Shamshad I; Khan S; Waqas M; Asma M; Nawab J; Gul N; Raiz A; Li G
    Int J Phytoremediation; 2016; 18(4):393-8. PubMed ID: 26515662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of heavy metals (Cu, Cr, Pb and Cd) in freshwater micro algae (Chlorella sp.).
    Kumar RM; Frankilin J; Raj SP
    J Environ Sci Eng; 2013 Jul; 55(3):371-6. PubMed ID: 25509955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of nickel and copper biosorption on brown algae Sargassum angustifolium: application of response surface methodology (RSM).
    Ahmady-Asbchin S; Tabaraki R; Jafari N; Allahverdi A; Azhdehakoshpour A
    Environ Technol; 2013; 34(13-16):2423-31. PubMed ID: 24350499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of heavy metal ions from aqueous solution by red macroalgae.
    Ibrahim WM
    J Hazard Mater; 2011 Sep; 192(3):1827-35. PubMed ID: 21798665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study.
    Abdolali A; Ngo HH; Guo W; Lu S; Chen SS; Nguyen NC; Zhang X; Wang J; Wu Y
    Sci Total Environ; 2016 Jan; 542(Pt A):603-11. PubMed ID: 26544889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger.
    Amini M; Younesi H; Bahramifar N; Lorestani AA; Ghorbani F; Daneshi A; Sharifzadeh M
    J Hazard Mater; 2008 Jun; 154(1-3):694-702. PubMed ID: 18068898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata.
    Han X; Wong YS; Wong MH; Tam NF
    J Hazard Mater; 2007 Jul; 146(1-2):65-72. PubMed ID: 17197078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass.
    Tsai WT; Chen HR
    J Hazard Mater; 2010 Mar; 175(1-3):844-9. PubMed ID: 19939553
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling.
    Freitas OM; Martins RJ; Delerue-Matos CM; Boaventura RA
    J Hazard Mater; 2008 May; 153(1-2):493-501. PubMed ID: 17935878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris.
    Al-Qunaibit M; Khalil M; Al-Wassil A
    Chemosphere; 2005 Jul; 60(3):412-8. PubMed ID: 15924961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles.
    Saranya N; Nakeeran E; Giri Nandagopal MS; Selvaraju N
    Water Sci Technol; 2017 May; 75(9-10):2094-2107. PubMed ID: 28498122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.