These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30439673)

  • 1. Harnessing lignin evolution for biotechnological applications.
    Renault H; Werck-Reichhart D; Weng JK
    Curr Opin Biotechnol; 2019 Apr; 56():105-111. PubMed ID: 30439673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition.
    Muro-Villanueva F; Mao X; Chapple C
    Curr Opin Biotechnol; 2019 Apr; 56():202-208. PubMed ID: 30677701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin biosynthesis and its integration into metabolism.
    Vanholme R; De Meester B; Ralph J; Boerjan W
    Curr Opin Biotechnol; 2019 Apr; 56():230-239. PubMed ID: 30913460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions.
    Dong NQ; Lin HX
    J Integr Plant Biol; 2021 Jan; 63(1):180-209. PubMed ID: 33325112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels.
    Achyuthan KE; Achyuthan AM; Adams PD; Dirk SM; Harper JC; Simmons BA; Singh AK
    Molecules; 2010 Nov; 15(12):8641-88. PubMed ID: 21116223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?
    de Vries J; de Vries S; Slamovits CH; Rose LE; Archibald JM
    Plant Cell Physiol; 2017 May; 58(5):934-945. PubMed ID: 28340089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignins: Biosynthesis and Biological Functions in Plants.
    Liu Q; Luo L; Zheng L
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway.
    Jansen F; Gillessen B; Mueller F; Commandeur U; Fischer R; Kreuzaler F
    Biotechnol Appl Biochem; 2014; 61(6):646-54. PubMed ID: 24575890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phenol-enriched cuticle is ancestral to lignin evolution in land plants.
    Renault H; Alber A; Horst NA; Basilio Lopes A; Fich EA; Kriegshauser L; Wiedemann G; Ullmann P; Herrgott L; Erhardt M; Pineau E; Ehlting J; Schmitt M; Rose JK; Reski R; Werck-Reichhart D
    Nat Commun; 2017 Mar; 8():14713. PubMed ID: 28270693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin and evolution of lignin biosynthesis.
    Weng JK; Chapple C
    New Phytol; 2010 Jul; 187(2):273-285. PubMed ID: 20642725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.
    Van de Wouwer D; Vanholme R; Decou R; Goeminne G; Audenaert D; Nguyen L; Höfer R; Pesquet E; Vanholme B; Boerjan W
    Plant Physiol; 2016 Sep; 172(1):198-220. PubMed ID: 27485881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin bioengineering.
    Eudes A; Liang Y; Mitra P; Loqué D
    Curr Opin Biotechnol; 2014 Apr; 26():189-98. PubMed ID: 24607805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical transformation of lignin for deriving valued commodities from lignocellulose.
    Gall DL; Ralph J; Donohue TJ; Noguera DR
    Curr Opin Biotechnol; 2017 Jun; 45():120-126. PubMed ID: 28346893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana.
    Kim JI; Dolan WL; Anderson NA; Chapple C
    Plant Cell; 2015 May; 27(5):1529-46. PubMed ID: 25944103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant.
    Cesarino I; Araújo P; Sampaio Mayer JL; Vicentini R; Berthet S; Demedts B; Vanholme B; Boerjan W; Mazzafera P
    J Exp Bot; 2013 Apr; 64(6):1769-81. PubMed ID: 23418623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in microbial lignin degradation and its applications.
    Kamimura N; Sakamoto S; Mitsuda N; Masai E; Kajita S
    Curr Opin Biotechnol; 2019 Apr; 56():179-186. PubMed ID: 30530243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing the Power of Enzymes for Tailoring and Valorizing Lignin.
    Weiss R; Guebitz GM; Pellis A; Nyanhongo GS
    Trends Biotechnol; 2020 Nov; 38(11):1215-1231. PubMed ID: 32423726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, simple screening method for investigating the properties of lignin oxidative activity.
    Tonin F; Vignali E; Pollegioni L; D'Arrigo P; Rosini E
    Enzyme Microb Technol; 2017 Jan; 96():143-150. PubMed ID: 27871375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.