These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 30439696)
1. Joint optimization of water allocation and water quality management in Haihe River basin. Martinsen G; Liu S; Mo X; Bauer-Gottwein P Sci Total Environ; 2019 Mar; 654():72-84. PubMed ID: 30439696 [TBL] [Abstract][Full Text] [Related]
2. Environmental risk-based hydroeconomic evaluation for alluvial aquifer management in arid river basin. Huang J; Wang W; Cui X; Wang D; Liu W; Liu X; Wang S Sci Total Environ; 2020 Apr; 711():134655. PubMed ID: 31812414 [TBL] [Abstract][Full Text] [Related]
3. Sustainable water quality management framework and a strategy planning system for a river basin. Chen CH; Liu WL; Leu HG Environ Manage; 2006 Dec; 38(6):952-73. PubMed ID: 16990981 [TBL] [Abstract][Full Text] [Related]
4. Managing aquifer recharge with multi-source water to realize sustainable management of groundwater resources in Jinan, China. Zhang Z; Wang W Environ Sci Pollut Res Int; 2021 Mar; 28(9):10872-10888. PubMed ID: 33106904 [TBL] [Abstract][Full Text] [Related]
5. Geophysical investigation of dambo groundwater reserves as sustainable irrigation water sources: case of Linthipe sub-basin. Chikabvumbwa SR; Sibale D; Marne R; Chisale SW; Chisanu L Heliyon; 2021 Nov; 7(11):e08346. PubMed ID: 34849417 [TBL] [Abstract][Full Text] [Related]
6. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
7. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China. Zhang Y; Xia J; Chen J; Zhang M Environ Monit Assess; 2011 Feb; 173(1-4):409-30. PubMed ID: 20237841 [TBL] [Abstract][Full Text] [Related]
8. The role of desalinisation to address aquifer overdraft in SE Spain. Martínez-Granados D; Calatrava J J Environ Manage; 2014 Nov; 144():247-57. PubMed ID: 24973613 [TBL] [Abstract][Full Text] [Related]
9. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Chi G; Su X; Lyu H; Li H; Xu G; Zhang Y Environ Res; 2022 Sep; 212(Pt A):113104. PubMed ID: 35381262 [TBL] [Abstract][Full Text] [Related]
10. Multi-objective double layer water optimal allocation and scheduling framework combing the integrated surface water - groundwater model. Li Z; Wang Y; Chang J; Guo A; Wang L; Niu C; Hu R; He B Water Res; 2024 Sep; 262():122141. PubMed ID: 39089121 [TBL] [Abstract][Full Text] [Related]
11. Multi-objective optimization-based reactive nitrogen transport modeling for the water-environment-agriculture nexus in a basin-scale coastal aquifer. Yin Z; Wu J; Song J; Yang Y; Zhu X; Wu J Water Res; 2022 Apr; 212():118111. PubMed ID: 35091218 [TBL] [Abstract][Full Text] [Related]
12. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Hao S; Li F; Li Y; Gu C; Zhang Q; Qiao Y; Jiao L; Zhu N Sci Total Environ; 2019 Mar; 657():1041-1050. PubMed ID: 30677872 [TBL] [Abstract][Full Text] [Related]
13. Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India. Jha MK; Peralta RC; Sahoo S Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32443477 [TBL] [Abstract][Full Text] [Related]
14. Combined impacts of future land-use and climate stressors on water resources and quality in groundwater and surface waterbodies of the upper Thames river basin, UK. Hutchins MG; Abesser C; Prudhomme C; Elliott JA; Bloomfield JP; Mansour MM; Hitt OE Sci Total Environ; 2018 Aug; 631-632():962-986. PubMed ID: 29728007 [TBL] [Abstract][Full Text] [Related]
15. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Nixdorf E; Sun Y; Lin M; Kolditz O Sci Total Environ; 2017 Dec; 605-606():598-609. PubMed ID: 28672248 [TBL] [Abstract][Full Text] [Related]
16. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391 [TBL] [Abstract][Full Text] [Related]
17. Enhancing crop production in the Haihe Basin while addressing challenges related to water quantity and quality. Wang G; Yang J; Liu X; Zhang H; Xu X; Luo J; Bai Z; Ma L Sci Total Environ; 2024 Oct; 955():176800. PubMed ID: 39383967 [TBL] [Abstract][Full Text] [Related]
18. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
19. Calculating man-made depletion of a stressed multiple aquifer resource on a national scale. Rödiger T; Magri F; Geyer S; Mallast U; Odeh T; Siebert C Sci Total Environ; 2020 Jul; 725():138478. PubMed ID: 32304968 [TBL] [Abstract][Full Text] [Related]
20. Surface Water-Groundwater Interaction in the Guanzhong Section of the Weihe River Basin, China. Kong F; Song J; Zhang Y; Fu G; Cheng D; Zhang G; Xue Y Ground Water; 2019 Jul; 57(4):647-660. PubMed ID: 30582150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]