These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30440015)

  • 21. Modeling cell migration regulated by cell extracellular-matrix micromechanical coupling.
    Zheng Y; Nan H; Liu Y; Fan Q; Wang X; Liu R; Liu L; Ye F; Sun B; Jiao Y
    Phys Rev E; 2019 Oct; 100(4-1):043303. PubMed ID: 31770879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational model for cell migration in three-dimensional matrices.
    Zaman MH; Kamm RD; Matsudaira P; Lauffenburger DA
    Biophys J; 2005 Aug; 89(2):1389-97. PubMed ID: 15908579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44.
    Friedl P; Maaser K; Klein CE; Niggemann B; Krohne G; Zänker KS
    Cancer Res; 1997 May; 57(10):2061-70. PubMed ID: 9158006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers.
    Schlüter DK; Ramis-Conde I; Chaplain MA
    Biophys J; 2012 Sep; 103(6):1141-51. PubMed ID: 22995486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stochastic modelling of biased cell migration and collagen matrix modification.
    Groh A; Louis AK
    J Math Biol; 2010 Nov; 61(5):617-47. PubMed ID: 20012047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function.
    Friedl P; Zänker KS; Bröcker EB
    Microsc Res Tech; 1998 Dec; 43(5):369-78. PubMed ID: 9858334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel 3D fibril force assay implicates src in tumor cell force generation in collagen networks.
    Polackwich RJ; Koch D; Arevalo R; Miermont AM; Jee KJ; Lazar J; Urbach J; Mueller SC; McAllister RG
    PLoS One; 2013; 8(3):e58138. PubMed ID: 23536784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Matrix degradation regulates osteoblast protrusion dynamics and individual migration.
    Movilla N; Valero C; Borau C; García-Aznar JM
    Integr Biol (Camb); 2019 Dec; 11(11):404-413. PubMed ID: 31922533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.
    Zaman MH; Trapani LM; Sieminski AL; Mackellar D; Gong H; Kamm RD; Wells A; Lauffenburger DA; Matsudaira P
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10889-94. PubMed ID: 16832052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration.
    Zaman MH; Matsudaira P; Lauffenburger DA
    Ann Biomed Eng; 2007 Jan; 35(1):91-100. PubMed ID: 17080315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A three-dimensional computational model of collagen network mechanics.
    Lee B; Zhou X; Riching K; Eliceiri KW; Keely PJ; Guelcher SA; Weaver AM; Jiang Y
    PLoS One; 2014; 9(11):e111896. PubMed ID: 25386649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentric gel system to study the biophysical role of matrix microenvironment on 3D cell migration.
    Kurniawan NA; Chaudhuri PK; Lim CT
    J Vis Exp; 2015 Apr; (98):e52735. PubMed ID: 25867104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis.
    Edgar LT; Underwood CJ; Guilkey JE; Hoying JB; Weiss JA
    PLoS One; 2014; 9(1):e85178. PubMed ID: 24465500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A computational model for collective cellular motion in three dimensions: general framework and case study for cell pair dynamics.
    Frascoli F; Hughes BD; Zaman MH; Landman KA
    PLoS One; 2013; 8(3):e59249. PubMed ID: 23527148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adhesion tunes speed and persistence by coordinating protrusions and extracellular matrix remodeling.
    Leineweber WD; Fraley SI
    Dev Cell; 2023 Aug; 58(15):1414-1428.e4. PubMed ID: 37321214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinative in vitro studies and computational model to predict 3D cell migration response to drug insult.
    Maffei JS; Srivastava J; Fallica B; Zaman MH
    Integr Biol (Camb); 2014 Oct; 6(10):957-72. PubMed ID: 25174457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational estimates of mechanical constraints on cell migration through the extracellular matrix.
    Maxian O; Mogilner A; Strychalski W
    PLoS Comput Biol; 2020 Aug; 16(8):e1008160. PubMed ID: 32853248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macrophage podosomes go 3D.
    Van Goethem E; Guiet R; Balor S; Charrière GM; Poincloux R; Labrousse A; Maridonneau-Parini I; Le Cabec V
    Eur J Cell Biol; 2011; 90(2-3):224-36. PubMed ID: 20801545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity.
    Sun M; Bloom AB; Zaman MH
    PLoS One; 2015; 10(7):e0131814. PubMed ID: 26158674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement.
    Stokes CL; Lauffenburger DA; Williams SK
    J Cell Sci; 1991 Jun; 99 ( Pt 2)():419-30. PubMed ID: 1885678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.