These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30440307)

  • 1. Convolutional Neural Networks for Pathological Voice Detection.
    Wu H; Soraghan J; Lowit A; Di Caterina G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Validation of a New Diagnostic Tool for the Differentiation of Pathological Voices in Parkinsonian Patients.
    Almaloglou EEI; S G; Chrousos G; K K
    Adv Exp Med Biol; 2021; 1339():77-83. PubMed ID: 35023093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
    Chen Z; Zhu P; Qiu W; Guo J; Li Y
    Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.
    Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT
    J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions.
    Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z
    J Voice; 2017 Jan; 31(1):3-15. PubMed ID: 26992554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural network ensemble for Parkinson's disease detection from voice recordings.
    Hireš M; Gazda M; Drotár P; Pah ND; Motin MA; Kumar DK
    Comput Biol Med; 2022 Feb; 141():105021. PubMed ID: 34799077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of the Cepstral Spectral Index of Dysphonia (CSID) as a Screening Tool for Voice Disorders: Development of Clinical Cutoff Scores.
    Awan SN; Roy N; Zhang D; Cohen SM
    J Voice; 2016 Mar; 30(2):130-44. PubMed ID: 26361215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voice pathology detection and classification from speech signals and EGG signals based on a multimodal fusion method.
    Geng L; Shan H; Xiao Z; Wang W; Wei M
    Biomed Tech (Berl); 2021 Dec; 66(6):613-625. PubMed ID: 34845886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Analysis of CNN and RNN for Voice Pathology Detection.
    Syed SA; Rashid M; Hussain S; Zahid H
    Biomed Res Int; 2021; 2021():6635964. PubMed ID: 33937404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Voice Activity Detection and Deep Neural Networks with Hybrid Speech Feature Extraction for Deceptive Speech Detection.
    Mihalache S; Burileanu D
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).
    Sauder C; Bretl M; Eadie T
    J Voice; 2017 Sep; 31(5):557-566. PubMed ID: 28169094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Diplophonation in Audio Recordings of German Standard Text Readings.
    Aichinger P; Schoentgen J
    J Voice; 2019 Nov; 33(6):949.e1-949.e10. PubMed ID: 30089537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitch Strength as an Outcome Measure for Treatment of Dysphonia.
    Kopf LM; Jackson-Menaldi C; Rubin AD; Skeffington J; Hunter EJ; Skowronski MD; Shrivastav R
    J Voice; 2017 Nov; 31(6):691-696. PubMed ID: 28318967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using SincNet for Learning Pathological Voice Disorders.
    Hung CH; Wang SS; Wang CT; Fang SH
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network.
    Ji Y; Zhang S; Xiao W
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31195603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network-based classification to screen for dysphonia using psychoacoustic scaling of acoustic voice features.
    Linder R; Albers AE; Hess M; Pöppl SJ; Schönweiler R
    J Voice; 2008 Mar; 22(2):155-63. PubMed ID: 17074463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidirectional regression (MDR)-based features for automatic voice disorder detection.
    Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M
    J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.