These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30440324)

  • 1. In-vivo Measurements of Tissue Impeditivity by Electrical Impedance Spectroscopy.
    Meroni D; Bovio D; Gualtieri M; Aliverti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of electrical impedance in different ex-vivo tissues.
    Meroni D; Bovio D; Frisoli PA; Aliverti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2311-2314. PubMed ID: 28268788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrical impedance tomography (EIT) multi-electrode needle-probe device for local assessment of heterogeneous tissue impeditivity.
    Meroni D; Maglioli CC; Bovio D; Greco FG; Aliverti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1385-1388. PubMed ID: 29060135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric impedance spectroscopy feature extraction for tissue classification with electrode embedded surgical needles through a modified forward stepwise method.
    Kent B; Rossa C
    Comput Biol Med; 2021 Aug; 135():104522. PubMed ID: 34153792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioimpedance sensing system for in-vivo cancer tissue identification: Design and preliminary evaluation.
    Maglioli CC; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4235-4238. PubMed ID: 29060832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human
    Halonen S; Ovissi A; Boyd S; Kari J; Kronström K; Kosunen J; Laurén H; Numminen K; Sievänen H; Hyttinen J
    Physiol Meas; 2022 Feb; 43(1):. PubMed ID: 35051907
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy.
    Kent B; Rossa C
    Med Biol Eng Comput; 2022 Jan; 60(1):19-31. PubMed ID: 34677740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical Impedance Spectroscopy for Ex-Vivo Breast Cancer Tissues Analysis.
    Meani F; Barbalace G; Meroni D; Pagani O; Perriard U; Pagnamenta A; Aliverti A; Meroni E
    Ann Biomed Eng; 2023 Jul; 51(7):1535-1546. PubMed ID: 37061594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG needle electrodes: electrical impedance.
    Wiechers DO; Blood JR; Stow RW
    Arch Phys Med Rehabil; 1979 Aug; 60(8):364-9. PubMed ID: 464781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimally invasive silicon probe for electrical impedance measurements in small animals.
    Ivorra A; Gómez R; Noguera N; Villa R; Sola A; Palacios L; Hotter G; Aguiló J
    Biosens Bioelectron; 2003 Dec; 19(4):391-9. PubMed ID: 14615098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new bioimpedance research device (BIRD) for measuring the electrical impedance of acupuncture meridians.
    Wong FW; Lim CE; Smith W
    J Altern Complement Med; 2010 Mar; 16(3):257-64. PubMed ID: 20192910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical impedance of stainless steel needle electrodes.
    Kalvøy H; Tronstad C; Nordbotten B; Grimnes S; Martinsen ØG
    Ann Biomed Eng; 2010 Jul; 38(7):2371-82. PubMed ID: 20217478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach of processing electrical bioimpedance data using differential impedance analysis.
    Sanchez B; Bandarenka AS; Vandersteen G; Schoukens J; Bragos R
    Med Eng Phys; 2013 Sep; 35(9):1349-57. PubMed ID: 23601379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance-based tissue discrimination for needle guidance.
    Kalvøy H; Frich L; Grimnes S; Martinsen OG; Hol PK; Stubhaug A
    Physiol Meas; 2009 Feb; 30(2):129-40. PubMed ID: 19136732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Bioimpedance-Based Biopsy Needle Can Identify Tissue Type with High Spatial Accuracy.
    Halonen S; Kari J; Ahonen P; Kronström K; Hyttinen J
    Ann Biomed Eng; 2019 Mar; 47(3):836-851. PubMed ID: 30565006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of tissue type surrounding a needle tip by electrical bioimpedance.
    Kalvoy H; Martinsen OG; Grimnes S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2285-6. PubMed ID: 19163156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method.
    Kalvøy H; Sauter AR
    J Clin Monit Comput; 2016 Apr; 30(2):185-92. PubMed ID: 25902898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemic small intestine-in vivo versus ex vivo bioimpedance measurements.
    Strand-Amundsen RJ; Reims HM; Tronstad C; Kalvøy H; Martinsen ØG; Høgetveit JO; Ruud TE; Tønnessen TI
    Physiol Meas; 2017 May; 38(5):715-728. PubMed ID: 28319030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.
    Laufer S; Solomon SB; Rubinsky B
    Physiol Meas; 2012 Jun; 33(6):997-1013. PubMed ID: 22561199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.