These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 30440333)
1. Bayesian Model Selection Framework to Improve Calibration of Continuous Glucose Monitoring Sensors for Diabetes Management. Acciaroli G; Vettoretti M; Facchinetti A; And Sparacino G Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():29-32. PubMed ID: 30440333 [TBL] [Abstract][Full Text] [Related]
2. Online Calibration of Glucose Sensors From the Measured Current by a Time-Varying Calibration Function and Bayesian Priors. Vettoretti M; Facchinetti A; Del Favero S; Sparacino G; Cobelli C IEEE Trans Biomed Eng; 2016 Aug; 63(8):1631-41. PubMed ID: 25915955 [TBL] [Abstract][Full Text] [Related]
3. From Two to One Per Day Calibration of Dexcom G4 Platinum by a Time-Varying Day-Specific Bayesian Prior. Acciaroli G; Vettoretti M; Facchinetti A; Sparacino G; Cobelli C Diabetes Technol Ther; 2016 Aug; 18(8):472-9. PubMed ID: 27512826 [TBL] [Abstract][Full Text] [Related]
4. Reduction of Blood Glucose Measurements to Calibrate Subcutaneous Glucose Sensors: A Bayesian Multiday Framework. Acciaroli G; Vettoretti M; Facchinetti A; Sparacino G; Cobelli C IEEE Trans Biomed Eng; 2018 Mar; 65(3):587-595. PubMed ID: 28541194 [TBL] [Abstract][Full Text] [Related]
5. A Personalized Week-to-Week Updating Algorithm to Improve Continuous Glucose Monitoring Performance. Zavitsanou S; Lee JB; Pinsker JE; Church MM; Doyle FJ; Dassau E J Diabetes Sci Technol; 2017 Nov; 11(6):1070-1079. PubMed ID: 29032732 [TBL] [Abstract][Full Text] [Related]
6. Development of an Error Model for a Factory-Calibrated Continuous Glucose Monitoring Sensor with 10-Day Lifetime. Vettoretti M; Battocchio C; Sparacino G; Facchinetti A Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816886 [TBL] [Abstract][Full Text] [Related]
7. Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives. Acciaroli G; Vettoretti M; Facchinetti A; Sparacino G Biosensors (Basel); 2018 Mar; 8(1):. PubMed ID: 29534053 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System During 10 Days of Use in Youth and Adults with Diabetes. Wadwa RP; Laffel LM; Shah VN; Garg SK Diabetes Technol Ther; 2018 Jun; 20(6):395-402. PubMed ID: 29901421 [TBL] [Abstract][Full Text] [Related]
9. Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness. Zanon M; Sparacino G; Facchinetti A; Talary MS; Mueller M; Caduff A; Cobelli C Sensors (Basel); 2013 Jun; 13(6):7279-95. PubMed ID: 23736850 [TBL] [Abstract][Full Text] [Related]
11. Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices. Rossetti P; Bondia J; VehĂ J; Fanelli CG Sensors (Basel); 2010; 10(12):10936-52. PubMed ID: 22163505 [TBL] [Abstract][Full Text] [Related]
12. A Bayesian Framework to Identify Type 1 Diabetes Physiological Models Using Easily Accessible Patient Data. Cappon G; Facchinetti A; Sparacino G; Favero SD Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6914-6917. PubMed ID: 31947429 [TBL] [Abstract][Full Text] [Related]
13. Modeling the error of factory-calibrated continuous glucose monitoring sensors: application to Dexcom G6 sensor data. Vettoretti M; Favero SD; Sparacino G; Facchinetti A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():750-753. PubMed ID: 31946005 [TBL] [Abstract][Full Text] [Related]
14. A Markov Model of Gap Occurrence in Continuous Glucose Monitoring Data for Realistic in Silico Clinical Trials. Vettoretti M; Drecogna M; Del Favero S; Facchinetti A; Sparacino G Comput Methods Programs Biomed; 2023 Oct; 240():107700. PubMed ID: 37437469 [TBL] [Abstract][Full Text] [Related]
15. Diabetes technology and treatments in the paediatric age group. Shalitin S; Peter Chase H Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816 [TBL] [Abstract][Full Text] [Related]
16. Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices. Facchinetti A; Del Favero S; Sparacino G; Cobelli C Med Biol Eng Comput; 2015 Dec; 53(12):1259-69. PubMed ID: 25416850 [TBL] [Abstract][Full Text] [Related]
17. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study. Hoss U; Jeddi I; Schulz M; Budiman E; Bhogal C; McGarraugh G Diabetes Technol Ther; 2010 Aug; 12(8):591-7. PubMed ID: 20615099 [TBL] [Abstract][Full Text] [Related]
18. Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes. Zueger T; Diem P; Mougiakakou S; Stettler C Diabetes Technol Ther; 2012 Jul; 14(7):583-8. PubMed ID: 22512266 [TBL] [Abstract][Full Text] [Related]
19. Head-to-head comparison between flash and continuous glucose monitoring systems in outpatients with type 1 diabetes. Bonora B; Maran A; Ciciliot S; Avogaro A; Fadini GP J Endocrinol Invest; 2016 Dec; 39(12):1391-1399. PubMed ID: 27287421 [TBL] [Abstract][Full Text] [Related]
20. Accuracy assessment of online glucose monitoring by a subcutaneous enzymatic glucose sensor during exercise in patients with type 1 diabetes treated by continuous subcutaneous insulin infusion. Radermecker RP; Fayolle C; Brun JF; Bringer J; Renard E Diabetes Metab; 2013 May; 39(3):258-62. PubMed ID: 23522730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]