These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30440430)

  • 1. Smartphone Based Human Breath Analysis from Respiratory Sounds.
    Azam MA; Shahzadi A; Khalid A; Anwar SM; Naeem U
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():445-448. PubMed ID: 30440430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Differentiation of Normal and Continuous Adventitious Respiratory Sounds Using Ensemble Empirical Mode Decomposition and Instantaneous Frequency.
    Lozano M; Fiz JA; Jané R
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):486-97. PubMed ID: 25643419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the Development of a Mobile Phonopneumogram: Automatic Breath-Phase Classification Using Smartphones.
    Reyes BA; Reljin N; Kong Y; Nam Y; Ha S; Chon KH
    Ann Biomed Eng; 2016 Sep; 44(9):2746-59. PubMed ID: 26847825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for Adventitious Respiratory Sound Analyzing Applications Based on Smartphones: A Survey.
    Tabatabaei SAH; Fischer P; Schneider H; Koehler U; Gross V; Sohrabi K
    IEEE Rev Biomed Eng; 2021; 14():98-115. PubMed ID: 32746364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.
    Palaniappan R; Sundaraj K; Sundaraj S; Huliraj N; Revadi SS
    Biomed Tech (Berl); 2018 Jul; 63(4):383-394. PubMed ID: 28596461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization.
    Pesu L; Helistö P; Ademovic E; Pesquet JC; Saarinen A; Sovijärvi AR
    Technol Health Care; 1998 Jun; 6(1):65-74. PubMed ID: 9754685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features.
    Nabi FG; Sundaraj K; Lam CK; Palaniappan R
    Comput Biol Med; 2019 Jan; 104():52-61. PubMed ID: 30439599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm.
    Haider NS; Singh BK; Periyasamy R; Behera AK
    J Med Syst; 2019 Jun; 43(8):255. PubMed ID: 31254141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of instantaneous frequency from empirical mode decomposition on respiratory sounds analysis.
    Lozano M; Fiz JA; Jané R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():981-4. PubMed ID: 24109854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining neural network and genetic algorithm for prediction of lung sounds.
    Güler I; Polat H; Ergün U
    J Med Syst; 2005 Jun; 29(3):217-31. PubMed ID: 16050077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination analysis of discontinuous breath sounds using higher-order crossings.
    Hadjileontiadis LJ
    Med Biol Eng Comput; 2003 Jul; 41(4):445-55. PubMed ID: 12892368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic breath phase detection using only tracheal sounds.
    Huq S; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():272-5. PubMed ID: 21096753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification.
    Xi J; Zhao W; Yuan JE; Kim J; Si X; Xu X
    PLoS One; 2015; 10(9):e0139511. PubMed ID: 26422016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded system design for classification of COPD and pneumonia patients by lung sound analysis.
    Hassan Naqvi SZ; Choudhry MA
    Biomed Tech (Berl); 2022 Jun; 67(3):201-218. PubMed ID: 35405045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Normal and Adventitious Breath Sounds].
    Koehler U; Hildebrandt O; Kerzel S; Urban C; Hoehle L; Weissflog A; Nikolaizik W; Koehler J; Sohrabi K; Gross V
    Pneumologie; 2016 Jun; 70(6):397-404. PubMed ID: 27177168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2019 Jan; 104():175-182. PubMed ID: 30496939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset.
    Nam Y; Reyes BA; Chon KH
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1493-1501. PubMed ID: 26415194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lightweight CNN Model for Detecting Respiratory Diseases From Lung Auscultation Sounds Using EMD-CWT-Based Hybrid Scalogram.
    Shuvo SB; Ali SN; Swapnil SI; Hasan T; Bhuiyan MIH
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2595-2603. PubMed ID: 33373309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.