These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 30440470)
21. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
22. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Heinrich MP; Oktay O; Bouteldja N Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894 [TBL] [Abstract][Full Text] [Related]
23. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning. Ataloglou D; Dimou A; Zarpalas D; Daras P Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605 [TBL] [Abstract][Full Text] [Related]
24. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
25. Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. González Sánchez JC; Magnusson M; Sandborg M; Carlsson Tedgren Å; Malusek A Phys Med; 2020 Jan; 69():241-247. PubMed ID: 31918376 [TBL] [Abstract][Full Text] [Related]
26. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766 [TBL] [Abstract][Full Text] [Related]
27. Abdominal artery segmentation method from CT volumes using fully convolutional neural network. Oda M; Roth HR; Kitasaka T; Misawa K; Fujiwara M; Mori K Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2069-2081. PubMed ID: 31493112 [TBL] [Abstract][Full Text] [Related]
28. Fast and Accurate U-Net Model for Fetal Ultrasound Image Segmentation. Ashkani Chenarlogh V; Ghelich Oghli M; Shabanzadeh A; Sirjani N; Akhavan A; Shiri I; Arabi H; Sanei Taheri M; Tarzamni MK Ultrason Imaging; 2022 Jan; 44(1):25-38. PubMed ID: 34986724 [TBL] [Abstract][Full Text] [Related]
29. Learning tree-structured representation for 3D coronary artery segmentation. Kong B; Wang X; Bai J; Lu Y; Gao F; Cao K; Xia J; Song Q; Yin Y Comput Med Imaging Graph; 2020 Mar; 80():101688. PubMed ID: 31926366 [TBL] [Abstract][Full Text] [Related]
30. A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography. Zreik M; van Hamersvelt RW; Wolterink JM; Leiner T; Viergever MA; Isgum I IEEE Trans Med Imaging; 2019 Jul; 38(7):1588-1598. PubMed ID: 30507498 [TBL] [Abstract][Full Text] [Related]
31. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
32. GC-Net: Global context network for medical image segmentation. Ni J; Wu J; Tong J; Chen Z; Zhao J Comput Methods Programs Biomed; 2020 Jul; 190():105121. PubMed ID: 31623863 [TBL] [Abstract][Full Text] [Related]
33. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation. Hoseini F; Shahbahrami A; Bayat P J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179 [TBL] [Abstract][Full Text] [Related]
34. Selective ensemble methods for deep learning segmentation of major vessels in invasive coronary angiography. Park J; Kweon J; Kim YI; Back I; Chae J; Roh JH; Kang DY; Lee PH; Ahn JM; Kang SJ; Park DW; Lee SW; Lee CW; Park SW; Park SJ; Kim YH Med Phys; 2023 Dec; 50(12):7822-7839. PubMed ID: 37310802 [TBL] [Abstract][Full Text] [Related]
35. [Automated Classification of Calcification and Stent on Computed Tomography Coronary Angiography Using Deep Learning]. Hasegawa A; Lee Y; Takeuchi Y; Ichikawa K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018; 74(10):1138-1143. PubMed ID: 30344210 [TBL] [Abstract][Full Text] [Related]
36. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
37. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501 [TBL] [Abstract][Full Text] [Related]
38. Deep vessel segmentation by learning graphical connectivity. Shin SY; Lee S; Yun ID; Lee KM Med Image Anal; 2019 Dec; 58():101556. PubMed ID: 31536906 [TBL] [Abstract][Full Text] [Related]
39. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Zhou X Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668 [TBL] [Abstract][Full Text] [Related]
40. Data Representations for Segmentation of Vascular Structures Using Convolutional Neural Networks with U-Net Architecture. Bargsten L; Wendebourg M; Schlaefer A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():989-992. PubMed ID: 31946059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]