These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30440559)

  • 1. A Deep Learning Approach for the Classification of Neuronal Cell Types.
    Buccino AP; Ness TV; Einevoll GT; Cauwenberghs G; Hafliger PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():999-1002. PubMed ID: 30440559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification.
    Buccino AP; Kordovan M; Ness TV; Merkt B; Häfliger PD; Fyhn M; Cauwenberghs G; Rotter S; Einevoll GT
    J Neurophysiol; 2018 Sep; 120(3):1212-1232. PubMed ID: 29847231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpikeDeeptector: a deep-learning based method for detection of neural spiking activity.
    Saif-Ur-Rehman M; Lienkämper R; Parpaley Y; Wellmer J; Liu C; Lee B; Kellis S; Andersen R; Iossifidis I; Glasmachers T; Klaes C
    J Neural Eng; 2019 Jul; 16(5):056003. PubMed ID: 31042684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localizing neuronal somata from Multi-Electrode Array in-vivo recordings using deep learning.
    Buccino AP; Ness TV; Einevoll GT; Cauwenberghs G; Hafliger PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():974-977. PubMed ID: 29060036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localising and classifying neurons from high density MEA recordings.
    Delgado Ruz I; Schultz SR
    J Neurosci Methods; 2014 Aug; 233():115-28. PubMed ID: 24954540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.
    Xu Y; Zeng X; Han L; Yang J
    Neural Netw; 2013 Jul; 43():99-113. PubMed ID: 23500504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering Neuronal Networks Defined by Consistent Between-Neuron Spike Timing from Neuronal Spike Recordings.
    van der Meij R; Voytek B
    eNeuro; 2018; 5(3):. PubMed ID: 29789811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Classifier Architectures for Online Neural Spike Sorting.
    Saeed M; Khan AA; Kamboh AM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):334-344. PubMed ID: 28029625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike detection and sorting with deep learning.
    Rácz M; Liber C; Németh E; Fiáth R; Rokai J; Harmati I; Ulbert I; Márton G
    J Neural Eng; 2020 Jan; 17(1):016038. PubMed ID: 31561235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines.
    Florescu D; Coca D
    Neural Comput; 2019 Sep; 31(9):1825-1852. PubMed ID: 31335291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architectures and accuracy of artificial neural network for disease classification from omics data.
    Yu H; Samuels DC; Zhao YY; Guo Y
    BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.