BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30440598)

  • 1. Synthetic Sensor Data Generation for Health Applications: A Supervised Deep Learning Approach.
    Norgaard S; Saeedi R; Sasani K; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1164-1167. PubMed ID: 30440598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN).
    Choi K; Vania M; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2683-2686. PubMed ID: 31946448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semantic representation and comparative analysis of physical activity sensor observations using MOX2-5 sensor in real and synthetic datasets: a proof-of-concept-study.
    Chatterjee A; Gerdes MW; Prinz A; Riegler MA; Martinez SG
    Sci Rep; 2024 Feb; 14(1):4634. PubMed ID: 38409365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised classifier guided by discriminator.
    Jamroziński S; Markowska-Kaczmar U
    Sci Rep; 2022 Aug; 12(1):14665. PubMed ID: 36038620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.
    Ross T; Zimmerer D; Vemuri A; Isensee F; Wiesenfarth M; Bodenstedt S; Both F; Kessler P; Wagner M; Müller B; Kenngott H; Speidel S; Kopp-Schneider A; Maier-Hein K; Maier-Hein L
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):925-933. PubMed ID: 29704196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAS-SGAN: A Semi-Supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.
    Das A; Devarampati VK; Nair MS
    IEEE J Biomed Health Inform; 2022 May; 26(5):2276-2287. PubMed ID: 34826299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Novel Sensor Network Structure for Classification Processing Based on the Machine Learning Method of the ACGAN.
    Chen Y; Tao J; Wang J; Chen X; Xie J; Xiong J; Yang K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.
    Hasegawa K; Moriwaki Y; Terada T; Wei C; Shimizu K
    J Bioinform Comput Biol; 2022 Dec; 20(6):2250026. PubMed ID: 36514872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incremental Learning to Personalize Human Activity Recognition Models: The Importance of Human AI Collaboration.
    Siirtola P; Röning J
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data.
    Ehrhart M; Resch B; Havas C; Niederseer D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Semi-Automatic Annotation Approach for Human Activity Recognition.
    Bota P; Silva J; Folgado D; Gamboa H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experiments on Adversarial Examples for Deep Learning Model Using Multimodal Sensors.
    Kurniawan A; Ohsita Y; Murata M
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition.
    Gao F; Ma F; Wang J; Sun J; Yang E; Zhou H
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Utility of Unsupervised Machine Learning in Anatomic Pathology.
    McAlpine ED; Michelow P; Celik T
    Am J Clin Pathol; 2022 Jan; 157(1):5-14. PubMed ID: 34302331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hierarchical Learning Approach for Human Action Recognition.
    Lemieux N; Noumeir R
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning.
    Nartey OT; Yang G; Asare SK; Wu J; Frempong LN
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.