BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30440604)

  • 1. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Semi-Supervised Transfer Learning with Dynamic Associate Domain Adaptation for Human Activity Recognition Using WiFi Signals.
    Chen YS; Chang YC; Li CY
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition.
    Haresamudram H; Essa I; Plötz T
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel WGF-LN based edge driven intelligence for wearable devices in human activity recognition.
    Menaka SR; Prakash M; Neelakandan S; Radhakrishnan A
    Sci Rep; 2023 Oct; 13(1):17822. PubMed ID: 37857665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Sensor Data Generation for Health Applications: A Supervised Deep Learning Approach.
    Norgaard S; Saeedi R; Sasani K; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1164-1167. PubMed ID: 30440598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Human Activity Recognition Using Semi-Supervised Active Transfer Learning.
    Oh S; Ashiquzzaman A; Lee D; Kim Y; Kim J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition.
    Thapa K; Seo Y; Yang SH; Kim K
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-to-End Versatile Human Activity Recognition with Activity Image Transfer Learning.
    Ye Y; Liu Z; Huang Z; Pan T; Wan Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1128-1131. PubMed ID: 34891486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning Compact Features for Human Activity Recognition Via Probabilistic First-Take-All.
    Ye J; Qi GJ; Zhuang N; Hu H; Hua KA
    IEEE Trans Pattern Anal Mach Intell; 2020 Jan; 42(1):126-139. PubMed ID: 30296212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaskCAE: Masked Convolutional AutoEncoder via Sensor Data Reconstruction for Self-Supervised Human Activity Recognition.
    Cheng D; Zhang L; Qin L; Wang S; Wu H; Song A
    IEEE J Biomed Health Inform; 2024 May; 28(5):2687-2698. PubMed ID: 38442051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Semi-Automatic Annotation Approach for Human Activity Recognition.
    Bota P; Silva J; Folgado D; Gamboa H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.