These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30440626)

  • 1. Low-Cost Carbon Fiber-Based Conductive Silicone Sponge EEG Electrodes.
    Krishnan A; Kumar R; Venkatesh P; Kelly S; Grover P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1287-1290. PubMed ID: 30440626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic Conductive Sponge Sensors for Fast Setup, Low Impedance Bio-potential Measurements.
    Krishnan A; Rozylowicz K; Kelly SK; Grover P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3973-3976. PubMed ID: 33018870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement.
    Gao K; Wu N; Ji B; Liu J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible, Air Dryable, and Fiber Modified Aerogel-Based Wet Electrode for Electrophysiological Monitoring.
    Saadatnia Z; GhaffariMosanenzadeh S; Marquez Chin M; Naguib HE; Popovic MR
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1820-1827. PubMed ID: 32897858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a Low-Cost EEG Monitoring System and Dry Electrodes toward Clinical Use in the Neonatal ICU.
    O'Sullivan M; Temko A; Bocchino A; O'Mahony C; Boylan G; Popovici E
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Hydrogel Tapes for Tripolar EEG: A Promising Solution to Paste-Related Challenges.
    Considine C; Besio W
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39001001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular multipin electrodes for comfortable dry EEG.
    Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Dry EEG Electrodes.
    Krachunov S; Casson AJ
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Disposable EEG Cap for Infant Recordings at the Neonatal Intensive Care Unit.
    Asayesh A; Ilen E; Metsäranta M; Vanhatalo S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Smart Helmet for Strategical BCI Applications.
    Ko LW; Chang Y; Wu PL; Tzou HA; Chen SF; Tang SC; Yeh CL; Chen YJ
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of semi-dry electrodes for EEG recording.
    Li GL; Wu JT; Xia YH; He QG; Jin HG
    J Neural Eng; 2020 Oct; 17(5):051004. PubMed ID: 33002886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach towards defibrillation electrodes: highly conductive isotropic carbon fibers.
    Alt E; Theres H; Heinz M; Albrecht K; Georg H; Bloemer H
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1923-8. PubMed ID: 1721200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hook Fabric Electroencephalography Electrode for Brain Activity Measurement without Shaving the Head.
    Tseghai GB; Malengier B; Fante KA; Van Langenhove L
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.