These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30440628)

  • 1. Design of High-Density Electrodes For EEG Acquisition.
    Xing X; Pei W; Wang Y; Liu Z; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1295-1298. PubMed ID: 30440628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte.
    Li G; Wang S; Li M; Duan YY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854
    [No Abstract]   [Full Text] [Related]  

  • 5. A high-density 256-channel cap for dry electroencephalography.
    Fiedler P; Fonseca C; Supriyanto E; Zanow F; Haueisen J
    Hum Brain Mapp; 2022 Mar; 43(4):1295-1308. PubMed ID: 34796574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording.
    Shen G; Gao K; Zhao N; Yi Z; Jiang C; Yang B; Liu J
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34883478
    [No Abstract]   [Full Text] [Related]  

  • 7. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition.
    Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating and benchmarking the EEG signal quality of high-density, dry MXene-based electrode arrays against gelled Ag/AgCl electrodes.
    Erickson B; Rich R; Shankar S; Kim B; Driscoll N; Mentzelopoulos G; Fernandez-Nuñez G; Vitale F; Medaglia JD
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38081060
    [No Abstract]   [Full Text] [Related]  

  • 10. A Film Electrode upon Nanoarchitectonics of Bacterial Cellulose and Conductive Fabric for Forehead Electroencephalogram Measurement.
    Gao K; Wu N; Ji B; Liu J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.
    Pedrosa P; Fiedler P; Pestana V; Vasconcelos B; Gaspar H; Amaral MH; Freitas D; Haueisen J; Nóbrega JM; Fonseca C
    Biomed Tech (Berl); 2018 Jul; 63(4):349-359. PubMed ID: 28467306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterising spontaneous and event related electroencephalagram signals.
    Fatoorechi M; Parkinson J; Prance RJ; Prance H; Seth AK; Schwartzman DJ
    J Neurosci Methods; 2015 Aug; 251():7-16. PubMed ID: 25936849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of headnet electrode arrays for electrical impedance tomography of the human head.
    Tidswell AT; Bagshaw AP; Holder DS; Yerworth RJ; Eadie L; Murray S; Morgan L; Bayford RH
    Physiol Meas; 2003 May; 24(2):527-44. PubMed ID: 12812436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas.
    Wang Z; Ding Y; Yuan W; Chen H; Chen W; Chen C
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal correlation between wet and original dry electrodes in electroencephalogram according to the contact impedance of dry electrodes.
    Higashi Y; Yokota Y; Naruse Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1062-1065. PubMed ID: 29060057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations.
    Górecka J; Makiewicz P
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New disposable forehead electrode set with excellent signal quality and imaging compatibility.
    Myllymaa S; Lepola P; Töyräs J; Hukkanen T; Mervaala E; Lappalainen R; Myllymaa K
    J Neurosci Methods; 2013 Apr; 215(1):103-9. PubMed ID: 23411124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and testing of acoustically-matched hydrogel-based electrodes for simultaneous EMG-ultrasound detection.
    Botter A; Beltrandi M; Cerone GL; Gazzoni M; Vieira TMM
    Med Eng Phys; 2019 Feb; 64():74-79. PubMed ID: 30554980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.