These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30440674)
1. Generalized Lower Limb Joint Angular Phase Space Analysis of Subject Specific Normal and Modified Gait. Rodrigues C; Correia M; Abrantes JMCS; Benedetti Rodrigues MA; Nadal J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1490-1493. PubMed ID: 30440674 [TBL] [Abstract][Full Text] [Related]
2. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data. Mentiplay BF; Clark RA Gait Posture; 2018 Jul; 64():75-83. PubMed ID: 29879631 [TBL] [Abstract][Full Text] [Related]
3. Quantitative evaluation of the major determinants of human gait. Lin YC; Gfoehler M; Pandy MG J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352 [TBL] [Abstract][Full Text] [Related]
4. Lower limb angular velocity during walking at various speeds. Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929 [TBL] [Abstract][Full Text] [Related]
5. Hip external rotation stiffness and midfoot passive mechanical resistance are associated with lower limb movement in the frontal and transverse planes during gait. Cardoso TB; Ocarino JM; Fajardo CC; Paes BDC; Souza TR; Fonseca ST; Resende RA Gait Posture; 2020 Feb; 76():305-310. PubMed ID: 31887703 [TBL] [Abstract][Full Text] [Related]
6. Fatigue matters: An intense 10 km run alters frontal and transverse plane joint kinematics in competitive and recreational adult runners. Willwacher S; Sanno M; Brüggemann GP Gait Posture; 2020 Feb; 76():277-283. PubMed ID: 31884254 [TBL] [Abstract][Full Text] [Related]
7. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. Duprey S; Cheze L; Dumas R J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914 [TBL] [Abstract][Full Text] [Related]
8. The influence of muscles on knee flexion during the swing phase of gait. Piazza SJ; Delp SL J Biomech; 1996 Jun; 29(6):723-33. PubMed ID: 9147969 [TBL] [Abstract][Full Text] [Related]
9. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analysis of Lower Limb Kinematics between the Initial and Terminal Phase of 5km Treadmill Running. Quan W; Wang M; Liu G; Fekete G; Baker JS; Ren F; Gu Y J Vis Exp; 2020 Jul; (161):. PubMed ID: 32744530 [TBL] [Abstract][Full Text] [Related]
11. Lower-limb sagittal joint angles during gait can be predicted based on foot acceleration and angular velocity. Inai T; Takabayashi T PeerJ; 2023; 11():e16131. PubMed ID: 37744216 [TBL] [Abstract][Full Text] [Related]
12. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement. Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):449-55. PubMed ID: 10771124 [TBL] [Abstract][Full Text] [Related]
13. Body size and lower limb posture during walking in humans. Hora M; Soumar L; Pontzer H; Sládek V PLoS One; 2017; 12(2):e0172112. PubMed ID: 28192522 [TBL] [Abstract][Full Text] [Related]
15. Joint angular velocity in spastic gait and the influence of muscle-tendon lengthening. Granata KP; Abel MF; Damiano DL J Bone Joint Surg Am; 2000 Feb; 82(2):174-86. PubMed ID: 10682726 [TBL] [Abstract][Full Text] [Related]
16. A three dimensional multiplane kinematic model for bilateral hind limb gait analysis in cats. Brown NP; Bertocci GE; Cheffer KA; Howland DR PLoS One; 2018; 13(8):e0197837. PubMed ID: 30080884 [TBL] [Abstract][Full Text] [Related]
17. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach. Doriot N; Chèze L IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490 [TBL] [Abstract][Full Text] [Related]
18. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study. Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162 [TBL] [Abstract][Full Text] [Related]
19. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy. Aguiar L; Santos-Rocha R; Vieira F; Branco M; Andrade C; Veloso A Gait Posture; 2015 Oct; 42(4):511-7. PubMed ID: 26410476 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Martelli S; Valente G; Viceconti M; Taddei F Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]