BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30440703)

  • 1. Detection of Respiratory Crackle Sounds via an Android Smartphone-based System.
    Olvera-Montes N; Reyes B; Charleston-Villalobos S; Gonzalez-Camarena R; MejiaAvila M; Dorantes-Mendez G; Reulecke S; Aljama-Corrales TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1620-1623. PubMed ID: 30440703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Smartphone-Based System for Automated Bedside Detection of Crackle Sounds in Diffuse Interstitial Pneumonia Patients.
    Reyes BA; Olvera-Montes N; Charleston-Villalobos S; González-Camarena R; Mejía-Ávila M; Aljama-Corrales T
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques.
    Charleston-Villalobos S; Dorantes-Méndez G; González-Camarena R; Chi-Lem G; Carrillo JG; Aljama-Corrales T
    Med Biol Eng Comput; 2011 Jan; 49(1):15-24. PubMed ID: 20652429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Analysis System for Automated Respiratory Cycle Segmentation and Crackle Peak Detection.
    McLane I; Lauwers E; Stas T; Busch-Vishniac I; Ides K; Verhulst S; Steckel J
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1847-1860. PubMed ID: 34705660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crackles detection using a time-variant autoregressive model.
    Dorantes-Méndez G; Charleston-Villalobos S; González-Camarena R; Chi-Lem G; Carrillo JG; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1894-7. PubMed ID: 19163059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of vesicular sounds from pulmonary crackle waveforms.
    Yeginer M; Kahya YP
    Comput Methods Programs Biomed; 2008 Jan; 89(1):1-13. PubMed ID: 18023914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of ICA algorithms for the analysis of crackles sounds.
    Castañeda-Villa N; Charleston-Villalobos S; González-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():605-8. PubMed ID: 23365965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous frequency based index to characterize respiratory crackles.
    Speranza CG; Moraes R
    Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of discontinuous adventitious lung sounds by Hilbert-Huang spectrum.
    Reyes BA; Charleston-Villalobos S; Gonzalez-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3620-3. PubMed ID: 19163493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of simulated crackle sounds distribution on the chest.
    Dorantes-Mendez G; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4801-4. PubMed ID: 19163790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Smartphone App for Visualizing Heart Sounds and Murmurs.
    Mamorita N; Arisaka N; Isonaka R; Kawakami T; Takeuchi A
    Cardiology; 2017; 137(3):193-200. PubMed ID: 28441656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance based respiratory sound decomposition aiming at localization of crackles in noisy measurements.
    Ulukaya S; Serbes G; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3688-3691. PubMed ID: 28269094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [New classification and analysis of lung sounds].
    Kikuchi K; Watanabe M; Hashizume T; Kawamura M; Kato R; Kobayashi K; Ishihara T
    Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2532-7. PubMed ID: 2625566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Adventitious Respiratory Sound Analyzing Applications Based on Smartphones: A Survey.
    Tabatabaei SAH; Fischer P; Schneider H; Koehler U; Gross V; Sohrabi K
    IEEE Rev Biomed Eng; 2021; 14():98-115. PubMed ID: 32746364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds.
    Chen CH; Huang WT; Tan TH; Chang CC; Chang YJ
    Sensors (Basel); 2015 Jun; 15(6):13132-58. PubMed ID: 26053756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital stethoscopes compared to standard auscultation for detecting abnormal paediatric breath sounds.
    Kevat AC; Kalirajah A; Roseby R
    Eur J Pediatr; 2017 Jul; 176(7):989-992. PubMed ID: 28508991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination.
    Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R
    Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung Auscultation Using the Smartphone-Feasibility Study in Real-World Clinical Practice.
    Ferreira-Cardoso H; Jácome C; Silva S; Amorim A; Redondo MT; Fontoura-Matias J; Vicente-Ferreira M; Vieira-Marques P; Valente J; Almeida R; Fonseca JA; Azevedo I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach.
    Sreejyothi S; Renjini A; Raj V; Swapna MNS; Sankararaman SI
    J Biol Phys; 2021 Jun; 47(2):103-115. PubMed ID: 33905049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature extraction for pulmonary crackle representation via wavelet networks.
    Yeginer M; Kahya YP
    Comput Biol Med; 2009 Aug; 39(8):713-21. PubMed ID: 19539902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.