These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30440726)

  • 1. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation.
    Dao QT; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1719-1722. PubMed ID: 30440726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards human-knee orthosis interaction based on adaptive impedance control through stiffness adjustment.
    Figueiredo J; Felix P; Santos CP; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():406-411. PubMed ID: 28813853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review in gait rehabilitation devices and applied control techniques.
    Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User-Adaptive Assistance of Assistive Knee Braces for Gait Rehabilitation.
    Ma H; Zhong C; Chen B; Chan KM; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1994-2005. PubMed ID: 30188836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.
    do Nascimento BG; Vimieiro CB; Nagem DA; Pinotti M
    Artif Organs; 2008 Apr; 32(4):317-22. PubMed ID: 18370947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Manufacturing, and Control of a Pneumatic-Driven Passive Robotic Gait Training System for Muscle-Weakness in a Lower Limb.
    Li IH; Lin YS; Lee LW; Lin WT
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ankle-foot orthosis powered by artificial pneumatic muscles.
    Ferris DP; Czerniecki JM; Hannaford B
    J Appl Biomech; 2005 May; 21(2):189-97. PubMed ID: 16082019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.
    Belforte G; Eula G; Appendino S; Sirolli S
    Proc Inst Mech Eng H; 2011 Feb; 225(2):158-69. PubMed ID: 21428150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of fluid environment using a robotic orthosis on human lower extremity for therapeutic purposes.
    Ertop TE; Yuksel T; Konukseven EI
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5015-5018. PubMed ID: 28269395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of body weight support gait training system using antagonistic bi-articular muscle model.
    Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback.
    Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M
    J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.