These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30440748)

  • 1. Visual Terrain Identification and Surface Inclination Estimation for Improving Human Locomotion with a Lower-Limb Prosthetic.
    Diaz JP; da Silva RL; Zhong B; Huang HH; Lobaton E
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1817-1820. PubMed ID: 30440748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons.
    Gao F; Liu G; Liang F; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Terrain Identification of the Smart Prosthetic Ankle by Fuzzy Logic.
    Chang M; Kim K; Jeon D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1801-1809. PubMed ID: 31398124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.
    Liu M; Wang D; Helen Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PROSTHETIC REHABILITATION OF THE LOWER EXTREMITY AMPUTEE WITH VASCULAR DISEASE.
    KOEPKE GH; WOLCOTT LE; HUNTER DC
    Med Bull (Ann Arbor); 1964; 30():113-5. PubMed ID: 14182245
    [No Abstract]   [Full Text] [Related]  

  • 7. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The traumatic lower extremity amputee: surgical challenges and advances in prosthetics.
    Cannada LK; Vaidya R; Covey DC; Hanna K; Dougherty P
    Instr Course Lect; 2013; 62():3-15. PubMed ID: 23395010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evidence-base for elevated vacuum in lower limb prosthetics: Literature review and professional feedback.
    Gholizadeh H; Lemaire ED; Eshraghi A
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():108-116. PubMed ID: 27423025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value of the pylon in pre-prosthetic management of the lower extremity amputee.
    BLAU L; PHILLIPS JJ; ROSE DL
    Arch Phys Med Rehabil; 1951 Sep; 32(9):585-9. PubMed ID: 14886144
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HapticLink: A Force-based Haptic Feedback System for Single and Double Lower-Limb Amputees.
    Canton Leal JM; Gyllinsky JV; Arredondo Zamudio AA; Mankodiya K
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4226-4229. PubMed ID: 36086048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground Reaction Forces During Sprinting in Unilateral Transfemoral Amputees.
    Makimoto A; Sano Y; Hashizume S; Murai A; Kobayashi Y; Takemura H; Hobara H
    J Appl Biomech; 2017 Dec; 33(6):406-409. PubMed ID: 28605277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical fiber Bragg grating-instrumented silicone liner for interface pressure measurement within prosthetic sockets of lower-limb amputees.
    Al-Fakih E; Arifin N; Pirouzi G; Mahamd Adikan FR; Shasmin HN; Abu Osman NA
    J Biomed Opt; 2017 Aug; 22(8):1-8. PubMed ID: 28822140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Vibrotactile Biofeedback Device Allowing Identification of Different Floor Conditions for Lower-Limb Amputees.
    Wan AH; Wong DW; Ma CZ; Zhang M; Lee WC
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1210-3. PubMed ID: 26763948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting mobility outcome in lower limb amputees with motor ability tests used in early rehabilitation.
    Spaan MH; Vrieling AH; van de Berg P; Dijkstra PU; van Keeken HG
    Prosthet Orthot Int; 2017 Apr; 41(2):171-177. PubMed ID: 27770064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.