BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30440758)

  • 1. Assessing the Role of Teleoperated Robotic Systems in Biomanipulations - A Case Study on Blastocyst Microinjection.
    Mattos LS; Caldwell DG; Grant E
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1857-1860. PubMed ID: 30440758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blastocyst microinjection automation.
    Mattos LS; Grant E; Thresher R; Kluckman K
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):822-31. PubMed ID: 19493853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully automated system for adherent cells microinjection.
    Becattini G; Mattos LS; Caldwell DG
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):83-93. PubMed ID: 24403406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing tele-manipulation systems using task performance for glovebox operations.
    Lopez Pulgarin EJ; Tokatli O; Burroughes G; Herrmann G
    Front Robot AI; 2022; 9():932538. PubMed ID: 36504493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A visual targeting system for the microinjection of unstained adherent cells.
    Becattini G; Mattos LS; Caldwell DG
    Comput Biol Med; 2013 Feb; 43(2):109-20. PubMed ID: 23287416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully automated robotic system for microinjection of zebrafish embryos.
    Wang W; Liu X; Gelinas D; Ciruna B; Sun Y
    PLoS One; 2007 Sep; 2(9):e862. PubMed ID: 17848993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale, multi-perspective imaging assisted robotic microinjection of 3D biological structures.
    Joshi AS; Alegria AD; Auch B; Khosla K; Mendana JB; Liu K; Bischof J; Gohl DM; Kodandaramaiah SB
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4844-4850. PubMed ID: 34892294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An MR-Safe Endovascular Robotic Platform: Design, Control, and Ex-Vivo Evaluation.
    Kundrat D; Dagnino G; Kwok TMY; Abdelaziz MEMK; Chi W; Nguyen A; Riga C; Yang GZ
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3110-3121. PubMed ID: 33705306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of Single Neural Stem Cells and Neurons in Brain Slices using Robotic Microinjection.
    Shull G; Haffner C; Huttner WB; Taverna E; Kodandaramaiah SB
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usability study of a vineyard teleoperated compost spreader.
    Ferrari E; Cavallo E
    Work; 2012; 41 Suppl 1():5019-26. PubMed ID: 22317497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Teleoperated Virtual Reality Human-Robot Five-Dimensional Collaboration System.
    Zhang Q; Liu Q; Duan J; Qin J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of the effect of teleoperation transmission delay on robot movement time.
    Hoffmann ER; Drury CG
    Ergonomics; 2019 Sep; 62(9):1175-1180. PubMed ID: 31064267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usability testing of a mobile robotic system for in-home telerehabilitation.
    Boissy P; Brière S; Corriveau H; Grant A; Lauria M; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1839-42. PubMed ID: 22254687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer.
    Adamides G; Katsanos C; Parmet Y; Christou G; Xenos M; Hadzilacos T; Edan Y
    Appl Ergon; 2017 Jul; 62():237-246. PubMed ID: 28411734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic platform for microinjection into single cells in brain tissue.
    Shull G; Haffner C; Huttner WB; Kodandaramaiah SB; Taverna E
    EMBO Rep; 2019 Oct; 20(10):e47880. PubMed ID: 31469223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.