These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30440760)

  • 41. Development of a comfort suit-type soft-wearable robot with flexible artificial muscles for walking assistance.
    Piao J; Kim M; Kim J; Kim C; Han S; Back I; Koh JS; Koo S
    Sci Rep; 2023 Mar; 13(1):4869. PubMed ID: 36964180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking.
    Barazesh H; Ahmad Sharbafi M
    Bioinspir Biomim; 2020 Mar; 15(3):036009. PubMed ID: 31995519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton.
    Di Natali C; Sadeghi A; Mondini A; Bottenberg E; Hartigan B; De Eyto A; O'Sullivan L; Rocon E; Stadler K; Mazzolai B; Caldwell DG; Ortiz J
    Front Neurorobot; 2020; 14():31. PubMed ID: 32714175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance.
    John SW; Murakami K; Komatsu M; Adachi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton.
    Cao W; Ma Y; Chen C; Zhang J; Wu X
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):384-394. PubMed ID: 35536795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance.
    Malcolm P; Galle S; Van den Berghe P; De Clercq D
    J Neuroeng Rehabil; 2018 Aug; 15(1):74. PubMed ID: 30092800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural gait event-based level walking assistance with a robotic hip exoskeleton.
    Jang J; Lee J; Lim B; Shim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-5. PubMed ID: 30440293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking.
    Shirota C; Tucker MR; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():430-434. PubMed ID: 28813857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke.
    Bae J; Awad LN; Long A; O'Donnell K; Hendron K; Holt KG; Ellis TD; Walsh CJ
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude.
    Malcolm P; Rossi DM; Siviy C; Lee S; Quinlivan BT; Grimmer M; Walsh CJ
    J Neuroeng Rehabil; 2017 Jul; 14(1):72. PubMed ID: 28701215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.
    Yandell MB; Quinlivan BT; Popov D; Walsh C; Zelik KE
    J Neuroeng Rehabil; 2017 May; 14(1):40. PubMed ID: 28521803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of walking smoothness using wearable robotic system curara® for spinocerebellar degeneration patients.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1494-1499. PubMed ID: 28814031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.