These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30440792)

  • 61. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation.
    Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke.
    Bhagat NA; French J; Venkatakrishnan A; Yozbatiran N; Francisco GE; O'Malley MK; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4127-4130. PubMed ID: 25570900
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Homology Characteristics of EEG and EMG for Lower Limb Voluntary Movement Intention.
    Zhang X; Li H; Lu Z; Yin G
    Front Neurorobot; 2021; 15():642607. PubMed ID: 34220479
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Development of newer rehabilitative measures for hemiparetic upper limb after stroke].
    Liu M
    Rinsho Shinkeigaku; 2012; 52(11):1178-81. PubMed ID: 23196555
    [TBL] [Abstract][Full Text] [Related]  

  • 66. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Abnormal EEG Responses to TMS During the Cortical Silent Period Are Associated With Hand Function in Chronic Stroke.
    Gray WA; Palmer JA; Wolf SL; Borich MR
    Neurorehabil Neural Repair; 2017 Jul; 31(7):666-676. PubMed ID: 28604171
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects.
    Sburlea AI; Montesano L; Minguez J
    J Neural Eng; 2017 Jun; 14(3):036004. PubMed ID: 28291737
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 72. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Coherence between cortical and muscular activities after subcortical stroke.
    Mima T; Toma K; Koshy B; Hallett M
    Stroke; 2001 Nov; 32(11):2597-601. PubMed ID: 11692023
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.
    Wöhrle H; Tabie M; Kim SK; Kirchner F; Kirchner EA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671632
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke.
    Gerloff C; Bushara K; Sailer A; Wassermann EM; Chen R; Matsuoka T; Waldvogel D; Wittenberg GF; Ishii K; Cohen LG; Hallett M
    Brain; 2006 Mar; 129(Pt 3):791-808. PubMed ID: 16364955
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Early detection of hand movements from electroencephalograms for stroke therapy applications.
    Muralidharan A; Chae J; Taylor DM
    J Neural Eng; 2011 Aug; 8(4):046003. PubMed ID: 21623009
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.
    Cho W; Vidaurre C; Hoffmann U; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7310-5. PubMed ID: 22256027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.