These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30440795)

  • 1. Decoding Spike Trains from Neurons with Spatio-Temporal Receptive Fields.
    Sadras N; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2012-2015. PubMed ID: 30440795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A point-process matched filter for event detection and decoding from population spike trains.
    Sadras N; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Oct; 16(6):066016. PubMed ID: 31437831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic analysis of neural encoding by point process adaptive filtering.
    Eden UT; Frank LM; Barbieri R; Solo V; Brown EN
    Neural Comput; 2004 May; 16(5):971-98. PubMed ID: 15070506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields.
    Agarwal R; Chen Z; Kloosterman F; Wilson MA; Sarma SV
    Neural Comput; 2016 Jul; 28(7):1356-87. PubMed ID: 27172447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
    Deng X; Liu DF; Kay K; Frank LM; Eden UT
    Neural Comput; 2015 Jul; 27(7):1438-60. PubMed ID: 25973549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding.
    Barbieri R; Wilson MA; Frank LM; Brown EN
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):131-6. PubMed ID: 16003890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.
    Ergün A; Barbieri R; Eden UT; Wilson MA; Brown EN
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):419-28. PubMed ID: 17355053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of neural receptive field plasticity by point process adaptive filtering.
    Brown EN; Nguyen DP; Frank LM; Wilson MA; Solo V
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12261-6. PubMed ID: 11593043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models.
    Rezaei MR; Arai K; Frank LM; Eden UT; Yousefi A
    J Neurosci Methods; 2021 Jan; 348():109006. PubMed ID: 33232686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements.
    Walker MF; Fitzgibbon EJ; Goldberg ME
    J Neurophysiol; 1995 May; 73(5):1988-2003. PubMed ID: 7623096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Ensemble Spike States from Extracellular Field Potentials.
    Huang Y; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural decoding with visual attention using sequential Monte Carlo for leaky integrate-and-fire neurons.
    Li K; Ditlevsen S
    PLoS One; 2019; 14(5):e0216322. PubMed ID: 31086375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
    Meyer AF; Diepenbrock JP; Happel MF; Ohl FW; Anemüller J
    PLoS One; 2014; 9(4):e93062. PubMed ID: 24699631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study.
    Kim KH; Kim SS; Kim SJ
    J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of spike train decoder under spike detection and classification errors using support vector machine.
    Kim KH; Kim SS; Kim SJ
    Med Biol Eng Comput; 2006 Mar; 44(1-2):124-30. PubMed ID: 16929930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons.
    Ralston BN; Flagg LQ; Faggin E; Birmingham JT
    J Neurophysiol; 2016 Jun; 115(5):2501-18. PubMed ID: 26888106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common-input models for multiple neural spike-train data.
    Kulkarni JE; Paninski L
    Network; 2007 Dec; 18(4):375-407. PubMed ID: 17943613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.