These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30440798)
1. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects. Bakshi K; Pramanik R; Manjunatha M; Kumar CS Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798 [TBL] [Abstract][Full Text] [Related]
2. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779 [TBL] [Abstract][Full Text] [Related]
3. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469 [TBL] [Abstract][Full Text] [Related]
4. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms. Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593 [TBL] [Abstract][Full Text] [Related]
5. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses. Akhtar A; Aghasadeghi N; Hargrove L; Bretl T J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687 [TBL] [Abstract][Full Text] [Related]
6. Towards Control of a Transhumeral Prosthesis with EEG Signals. Bandara DSV; Arata J; Kiguchi K Bioengineering (Basel); 2018 Mar; 5(2):. PubMed ID: 29565293 [TBL] [Abstract][Full Text] [Related]
7. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis. Alshammary NA; Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114 [TBL] [Abstract][Full Text] [Related]
8. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion. Ahmed MH; Chai J; Shimoda S; Hayashibe M Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396 [TBL] [Abstract][Full Text] [Related]
9. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Crouch DL; Huang H J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972 [TBL] [Abstract][Full Text] [Related]
10. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures. Lyons KR; Joshi SS; Joshi SS; Lyons KR IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241 [TBL] [Abstract][Full Text] [Related]
11. Electromyogram-based neural network control of transhumeral prostheses. Pulliam CL; Lambrecht JM; Kirsch RF J Rehabil Res Dev; 2011; 48(6):739-54. PubMed ID: 21938659 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals. Zhang Q; Liu R; Chen W; Xiong C Front Neurosci; 2017; 11():280. PubMed ID: 28611573 [TBL] [Abstract][Full Text] [Related]
13. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies? Merad M; de Montalivet É; Touillet A; Martinet N; Roby-Brami A; Jarrassé N Front Neurorobot; 2018; 12():1. PubMed ID: 29456499 [TBL] [Abstract][Full Text] [Related]
14. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors. Samuel OW; Geng Y; Li X; Li G J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task. Kaliki RR; Davoodi R; Loeb GE IEEE Trans Biomed Eng; 2013 Mar; 60(3):792-802. PubMed ID: 22287229 [TBL] [Abstract][Full Text] [Related]
16. Model predictive controller-based spatiotemporal path tracking method for transhumeral prostheses. Dannangoda Gamage KM; Gopura RARC; Amarasinghe YWR; Mann GKI Int J Med Robot; 2019 Jun; 15(3):e1980. PubMed ID: 30588729 [TBL] [Abstract][Full Text] [Related]
17. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T; Sakurada T; Koike Y; Kansaku K J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293 [TBL] [Abstract][Full Text] [Related]
18. User experience of controlling the DEKA Arm with EMG pattern recognition. Resnik LJ; Acluche F; Lieberman Klinger S PLoS One; 2018; 13(9):e0203987. PubMed ID: 30240420 [TBL] [Abstract][Full Text] [Related]
19. Development of a multi-DoF transhumeral robotic arm prosthesis. Bandara DSV; Gopura RARC; Hemapala KTMU; Kiguchi K Med Eng Phys; 2017 Oct; 48():131-141. PubMed ID: 28728864 [TBL] [Abstract][Full Text] [Related]
20. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control. Liu L; Liu P; Clancy EA; Scheme E; Englehart IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):767-74. PubMed ID: 23475374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]